Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Fonseca
1
56 kgTeunissen
2
73 kgHonig
4
61 kgSénéchal
5
77 kgvan der Poel
7
75 kgEngoulvent
8
82 kgSeeldraeyers
9
60 kgDelaplace
10
65 kgVan Asbroeck
11
72 kgMeijers
12
68 kgGérard
13
70 kgDumoulin
14
57 kgNauleau
15
67 kgVaugrenard
16
72 kgPlanckaert
17
65 kgFeillu
18
69 kgSijmens
19
69 kgRossetto
21
68 kg
1
56 kgTeunissen
2
73 kgHonig
4
61 kgSénéchal
5
77 kgvan der Poel
7
75 kgEngoulvent
8
82 kgSeeldraeyers
9
60 kgDelaplace
10
65 kgVan Asbroeck
11
72 kgMeijers
12
68 kgGérard
13
70 kgDumoulin
14
57 kgNauleau
15
67 kgVaugrenard
16
72 kgPlanckaert
17
65 kgFeillu
18
69 kgSijmens
19
69 kgRossetto
21
68 kg
Weight (KG) →
Result →
82
56
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | FONSECA Armindo | 56 |
2 | TEUNISSEN Mike | 73 |
4 | HONIG Reinier | 61 |
5 | SÉNÉCHAL Florian | 77 |
7 | VAN DER POEL Mathieu | 75 |
8 | ENGOULVENT Jimmy | 82 |
9 | SEELDRAEYERS Kevin | 60 |
10 | DELAPLACE Anthony | 65 |
11 | VAN ASBROECK Tom | 72 |
12 | MEIJERS Jeroen | 68 |
13 | GÉRARD Arnaud | 70 |
14 | DUMOULIN Samuel | 57 |
15 | NAULEAU Bryan | 67 |
16 | VAUGRENARD Benoît | 72 |
17 | PLANCKAERT Baptiste | 65 |
18 | FEILLU Brice | 69 |
19 | SIJMENS Nico | 69 |
21 | ROSSETTO Stéphane | 68 |