Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Fonseca
1
56 kgVan Asbroeck
2
72 kgLietaer
3
70 kgTeunissen
4
73 kgRossetto
6
68 kgFeillu
7
69 kgGérard
8
70 kgHonig
9
61 kgSénéchal
10
77 kgNauleau
11
67 kgvan der Poel
13
75 kgDumoulin
15
57 kgEngoulvent
16
82 kgSeeldraeyers
17
60 kgDelaplace
18
65 kgBackaert
19
78 kgVaugrenard
20
72 kgLe Bon
21
70 kgMeijers
22
68 kgVaubourzeix
23
70 kgPlanckaert
24
65 kgSijmens
25
69 kg
1
56 kgVan Asbroeck
2
72 kgLietaer
3
70 kgTeunissen
4
73 kgRossetto
6
68 kgFeillu
7
69 kgGérard
8
70 kgHonig
9
61 kgSénéchal
10
77 kgNauleau
11
67 kgvan der Poel
13
75 kgDumoulin
15
57 kgEngoulvent
16
82 kgSeeldraeyers
17
60 kgDelaplace
18
65 kgBackaert
19
78 kgVaugrenard
20
72 kgLe Bon
21
70 kgMeijers
22
68 kgVaubourzeix
23
70 kgPlanckaert
24
65 kgSijmens
25
69 kg
Weight (KG) →
Result →
82
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | FONSECA Armindo | 56 |
2 | VAN ASBROECK Tom | 72 |
3 | LIETAER Eliot | 70 |
4 | TEUNISSEN Mike | 73 |
6 | ROSSETTO Stéphane | 68 |
7 | FEILLU Brice | 69 |
8 | GÉRARD Arnaud | 70 |
9 | HONIG Reinier | 61 |
10 | SÉNÉCHAL Florian | 77 |
11 | NAULEAU Bryan | 67 |
13 | VAN DER POEL Mathieu | 75 |
15 | DUMOULIN Samuel | 57 |
16 | ENGOULVENT Jimmy | 82 |
17 | SEELDRAEYERS Kevin | 60 |
18 | DELAPLACE Anthony | 65 |
19 | BACKAERT Frederik | 78 |
20 | VAUGRENARD Benoît | 72 |
21 | LE BON Johan | 70 |
22 | MEIJERS Jeroen | 68 |
23 | VAUBOURZEIX Thomas | 70 |
24 | PLANCKAERT Baptiste | 65 |
25 | SIJMENS Nico | 69 |