Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Nieuwenhuis
1
71 kgAsgreen
3
75 kgWürtz Schmidt
4
70 kgIturria
5
69 kgKustadinchev
6
66 kgvan der Poel
7
75 kgLedanois
8
67 kgHoelgaard
9
77 kgLietaer
10
70 kgMadrazo
11
61 kgBouhanni
12
70 kgRickaert
13
88 kgHuppertz
14
66 kgGonzález Prieto
16
69 kgChavanel
17
77 kgGène
18
67 kgMeisen
19
62 kgOffredo
20
69 kgFédrigo
21
66 kgScully
22
85 kgGonçalves
24
70 kg
1
71 kgAsgreen
3
75 kgWürtz Schmidt
4
70 kgIturria
5
69 kgKustadinchev
6
66 kgvan der Poel
7
75 kgLedanois
8
67 kgHoelgaard
9
77 kgLietaer
10
70 kgMadrazo
11
61 kgBouhanni
12
70 kgRickaert
13
88 kgHuppertz
14
66 kgGonzález Prieto
16
69 kgChavanel
17
77 kgGène
18
67 kgMeisen
19
62 kgOffredo
20
69 kgFédrigo
21
66 kgScully
22
85 kgGonçalves
24
70 kg
Weight (KG) →
Result →
88
61
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | NIEUWENHUIS Joris | 71 |
3 | ASGREEN Kasper | 75 |
4 | WÜRTZ SCHMIDT Mads | 70 |
5 | ITURRIA Mikel | 69 |
6 | KUSTADINCHEV Roman | 66 |
7 | VAN DER POEL Mathieu | 75 |
8 | LEDANOIS Kévin | 67 |
9 | HOELGAARD Daniel | 77 |
10 | LIETAER Eliot | 70 |
11 | MADRAZO Ángel | 61 |
12 | BOUHANNI Rayane | 70 |
13 | RICKAERT Jonas | 88 |
14 | HUPPERTZ Joshua | 66 |
16 | GONZÁLEZ PRIETO Aitor | 69 |
17 | CHAVANEL Sébastien | 77 |
18 | GÈNE Yohann | 67 |
19 | MEISEN Marcel | 62 |
20 | OFFREDO Yoann | 69 |
21 | FÉDRIGO Pierrick | 66 |
22 | SCULLY Tom | 85 |
24 | GONÇALVES Domingos | 70 |