Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Boudat
1
70 kgChicchi
2
76 kgCoquard
3
59 kgDuval
4
68 kgDuque
5
59 kgPasqualon
7
75 kgLe Bon
8
70 kgSarreau
9
76 kgViganò
10
67 kgChavanel
11
77 kgMcLay
12
72 kgHofstetter
13
66 kgScully
14
85 kgPetit
15
80 kgBarbier
16
79 kgBol
17
83 kgRickaert
18
88 kgJõeäär
19
84 kgAsgreen
20
75 kgTusveld
22
70 kgvan der Poel
23
75 kgIturria
24
69 kgMaikin
25
68 kgKustadinchev
26
66 kg
1
70 kgChicchi
2
76 kgCoquard
3
59 kgDuval
4
68 kgDuque
5
59 kgPasqualon
7
75 kgLe Bon
8
70 kgSarreau
9
76 kgViganò
10
67 kgChavanel
11
77 kgMcLay
12
72 kgHofstetter
13
66 kgScully
14
85 kgPetit
15
80 kgBarbier
16
79 kgBol
17
83 kgRickaert
18
88 kgJõeäär
19
84 kgAsgreen
20
75 kgTusveld
22
70 kgvan der Poel
23
75 kgIturria
24
69 kgMaikin
25
68 kgKustadinchev
26
66 kg
Weight (KG) →
Result →
88
59
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | BOUDAT Thomas | 70 |
2 | CHICCHI Francesco | 76 |
3 | COQUARD Bryan | 59 |
4 | DUVAL Julien | 68 |
5 | DUQUE Leonardo Fabio | 59 |
7 | PASQUALON Andrea | 75 |
8 | LE BON Johan | 70 |
9 | SARREAU Marc | 76 |
10 | VIGANÒ Davide | 67 |
11 | CHAVANEL Sébastien | 77 |
12 | MCLAY Daniel | 72 |
13 | HOFSTETTER Hugo | 66 |
14 | SCULLY Tom | 85 |
15 | PETIT Adrien | 80 |
16 | BARBIER Rudy | 79 |
17 | BOL Cees | 83 |
18 | RICKAERT Jonas | 88 |
19 | JÕEÄÄR Gert | 84 |
20 | ASGREEN Kasper | 75 |
22 | TUSVELD Martijn | 70 |
23 | VAN DER POEL Mathieu | 75 |
24 | ITURRIA Mikel | 69 |
25 | MAIKIN Roman | 68 |
26 | KUSTADINCHEV Roman | 66 |