Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
van der Poel
1
75 kgSarreau
2
76 kgCosnefroy
3
65 kgKanter
4
68 kgKessler
6
78 kgGodon
7
74 kgMoreira
8
76 kgTouzé
9
69 kgBagdonas
10
78 kgLeveau
11
67 kgSeigle
12
63 kgSoupe
13
70 kgHoelgaard
14
77 kgIserbyt
15
55 kgFonseca
16
56 kgMaurelet
17
56 kgLedanois
18
67 kgMadrazo
19
61 kgMorice
20
81 kgGène
21
67 kgŤoupalík
22
65 kgVermeersch
23
68 kgJoseph
24
71 kg
1
75 kgSarreau
2
76 kgCosnefroy
3
65 kgKanter
4
68 kgKessler
6
78 kgGodon
7
74 kgMoreira
8
76 kgTouzé
9
69 kgBagdonas
10
78 kgLeveau
11
67 kgSeigle
12
63 kgSoupe
13
70 kgHoelgaard
14
77 kgIserbyt
15
55 kgFonseca
16
56 kgMaurelet
17
56 kgLedanois
18
67 kgMadrazo
19
61 kgMorice
20
81 kgGène
21
67 kgŤoupalík
22
65 kgVermeersch
23
68 kgJoseph
24
71 kg
Weight (KG) →
Result →
81
55
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Mathieu | 75 |
2 | SARREAU Marc | 76 |
3 | COSNEFROY Benoît | 65 |
4 | KANTER Max | 68 |
6 | KESSLER Robert | 78 |
7 | GODON Dorian | 74 |
8 | MOREIRA Mauricio | 76 |
9 | TOUZÉ Damien | 69 |
10 | BAGDONAS Gediminas | 78 |
11 | LEVEAU Jérémy | 67 |
12 | SEIGLE Romain | 63 |
13 | SOUPE Geoffrey | 70 |
14 | HOELGAARD Daniel | 77 |
15 | ISERBYT Eli | 55 |
16 | FONSECA Armindo | 56 |
17 | MAURELET Flavien | 56 |
18 | LEDANOIS Kévin | 67 |
19 | MADRAZO Ángel | 61 |
20 | MORICE Julien | 81 |
21 | GÈNE Yohann | 67 |
22 | ŤOUPALÍK Adam | 65 |
23 | VERMEERSCH Gianni | 68 |
24 | JOSEPH Thomas | 71 |