Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Godon
1
74 kgTouzé
2
69 kgDowney
3
74 kgKurianov
4
74 kgBarthe
5
70 kgSweeny
6
75 kgWillems
7
67 kgHeinschke
8
70 kgPlanckaert
10
69 kgFeeley
12
59 kgRiou
13
68 kgBarbier
15
69 kgRüegg
16
66 kgNaberman
17
70 kgMaas
18
70 kgTeggart
19
63 kgMitri
20
60 kgVervloesem
21
65 kgGonzález
22
68 kgSureda
24
70 kgMärkl
26
70 kgSalmon
27
59 kgPeeters
28
69 kgGarel
29
77 kg
1
74 kgTouzé
2
69 kgDowney
3
74 kgKurianov
4
74 kgBarthe
5
70 kgSweeny
6
75 kgWillems
7
67 kgHeinschke
8
70 kgPlanckaert
10
69 kgFeeley
12
59 kgRiou
13
68 kgBarbier
15
69 kgRüegg
16
66 kgNaberman
17
70 kgMaas
18
70 kgTeggart
19
63 kgMitri
20
60 kgVervloesem
21
65 kgGonzález
22
68 kgSureda
24
70 kgMärkl
26
70 kgSalmon
27
59 kgPeeters
28
69 kgGarel
29
77 kg
Weight (KG) →
Result →
77
59
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | GODON Dorian | 74 |
2 | TOUZÉ Damien | 69 |
3 | DOWNEY Mark | 74 |
4 | KURIANOV Stepan | 74 |
5 | BARTHE Cyril | 70 |
6 | SWEENY Harry | 75 |
7 | WILLEMS Thimo | 67 |
8 | HEINSCHKE Leon | 70 |
10 | PLANCKAERT Emiel | 69 |
12 | FEELEY Daire | 59 |
13 | RIOU Alan | 68 |
15 | BARBIER Pierre | 69 |
16 | RÜEGG Timon | 66 |
17 | NABERMAN Tim | 70 |
18 | MAAS Edo | 70 |
19 | TEGGART Matthew | 63 |
20 | MITRI James | 60 |
21 | VERVLOESEM Xandres | 65 |
22 | GONZÁLEZ David | 68 |
24 | SUREDA Jaume | 70 |
26 | MÄRKL Niklas | 70 |
27 | SALMON Martin | 59 |
28 | PEETERS Yannick | 69 |
29 | GAREL Adrien | 77 |