Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Walsleben
1
66 kgRubio
2
81 kgDémare
3
76 kgHalvorsen
4
69 kgCoquard
5
59 kgAllegaert
6
70 kgSarreau
7
76 kgAdrià
8
64 kgEekhoff
9
75 kgWelten
10
81 kgAberasturi
11
69 kgFiné
12
70 kgBarthe
13
70 kgVermeulen
14
64 kgCosnefroy
15
65 kgMaurelet
16
56 kgUrruty
17
59 kgTrarieux
18
71 kg
1
66 kgRubio
2
81 kgDémare
3
76 kgHalvorsen
4
69 kgCoquard
5
59 kgAllegaert
6
70 kgSarreau
7
76 kgAdrià
8
64 kgEekhoff
9
75 kgWelten
10
81 kgAberasturi
11
69 kgFiné
12
70 kgBarthe
13
70 kgVermeulen
14
64 kgCosnefroy
15
65 kgMaurelet
16
56 kgUrruty
17
59 kgTrarieux
18
71 kg
Weight (KG) →
Result →
81
56
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | WALSLEBEN Philipp | 66 |
2 | RUBIO Diego | 81 |
3 | DÉMARE Arnaud | 76 |
4 | HALVORSEN Kristoffer | 69 |
5 | COQUARD Bryan | 59 |
6 | ALLEGAERT Piet | 70 |
7 | SARREAU Marc | 76 |
8 | ADRIÀ Roger | 64 |
9 | EEKHOFF Nils | 75 |
10 | WELTEN Bram | 81 |
11 | ABERASTURI Jon | 69 |
12 | FINÉ Eddy | 70 |
13 | BARTHE Cyril | 70 |
14 | VERMEULEN Emiel | 64 |
15 | COSNEFROY Benoît | 65 |
16 | MAURELET Flavien | 56 |
17 | URRUTY Maxime | 59 |
18 | TRARIEUX Julien | 71 |