Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Restrepo
1
73 kgAdrià
2
64 kgDewulf
3
74 kgUrruty
4
59 kgBayer
5
71 kgVan Niekerk
6
64 kgGalván
7
69 kgDelettre
8
62 kgCosnefroy
9
65 kgDe Winter
10
83 kgRubio
11
81 kgRobeet
12
75 kgCoquard
13
59 kgPaillot
14
72 kgFuentes
15
77 kgJerman
16
67 kgWalsleben
17
66 kgSinkeldam
18
77 kgTrarieux
19
71 kgPedersen
20
71 kgLeveau
21
67 kgGuarnieri
22
80 kgJungels
23
70 kg
1
73 kgAdrià
2
64 kgDewulf
3
74 kgUrruty
4
59 kgBayer
5
71 kgVan Niekerk
6
64 kgGalván
7
69 kgDelettre
8
62 kgCosnefroy
9
65 kgDe Winter
10
83 kgRubio
11
81 kgRobeet
12
75 kgCoquard
13
59 kgPaillot
14
72 kgFuentes
15
77 kgJerman
16
67 kgWalsleben
17
66 kgSinkeldam
18
77 kgTrarieux
19
71 kgPedersen
20
71 kgLeveau
21
67 kgGuarnieri
22
80 kgJungels
23
70 kg
Weight (KG) →
Result →
83
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | RESTREPO Jhonatan | 73 |
2 | ADRIÀ Roger | 64 |
3 | DEWULF Stan | 74 |
4 | URRUTY Maxime | 59 |
5 | BAYER Tobias | 71 |
6 | VAN NIEKERK Morné | 64 |
7 | GALVÁN Francisco | 69 |
8 | DELETTRE Alexandre | 62 |
9 | COSNEFROY Benoît | 65 |
10 | DE WINTER Ludwig | 83 |
11 | RUBIO Diego | 81 |
12 | ROBEET Ludovic | 75 |
13 | COQUARD Bryan | 59 |
14 | PAILLOT Yoann | 72 |
15 | FUENTES Ángel | 77 |
16 | JERMAN Žiga | 67 |
17 | WALSLEBEN Philipp | 66 |
18 | SINKELDAM Ramon | 77 |
19 | TRARIEUX Julien | 71 |
20 | PEDERSEN Casper | 71 |
21 | LEVEAU Jérémy | 67 |
22 | GUARNIERI Jacopo | 80 |
23 | JUNGELS Bob | 70 |