Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Tesson
1
59 kgWelten
2
81 kgBoudat
3
70 kgLecroq
4
70 kgDe Vylder
5
70 kgTurgis
6
70 kgSimon
7
65 kgAranburu
8
63 kgMadrazo
9
61 kgAular
10
65 kgManzin
11
69 kgCapiot
12
69 kgFretin
13
70 kgRosskopf
14
74 kgAniołkowski
15
68 kgGarcía Cortina
16
77 kgAngulo
17
67 kgLivyns
18
58 kgAskey
19
75 kg
1
59 kgWelten
2
81 kgBoudat
3
70 kgLecroq
4
70 kgDe Vylder
5
70 kgTurgis
6
70 kgSimon
7
65 kgAranburu
8
63 kgMadrazo
9
61 kgAular
10
65 kgManzin
11
69 kgCapiot
12
69 kgFretin
13
70 kgRosskopf
14
74 kgAniołkowski
15
68 kgGarcía Cortina
16
77 kgAngulo
17
67 kgLivyns
18
58 kgAskey
19
75 kg
Weight (KG) →
Result →
81
58
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | TESSON Jason | 59 |
2 | WELTEN Bram | 81 |
3 | BOUDAT Thomas | 70 |
4 | LECROQ Jérémy | 70 |
5 | DE VYLDER Lindsay | 70 |
6 | TURGIS Anthony | 70 |
7 | SIMON Julien | 65 |
8 | ARANBURU Alex | 63 |
9 | MADRAZO Ángel | 61 |
10 | AULAR Orluis | 65 |
11 | MANZIN Lorrenzo | 69 |
12 | CAPIOT Amaury | 69 |
13 | FRETIN Milan | 70 |
14 | ROSSKOPF Joey | 74 |
15 | ANIOŁKOWSKI Stanisław | 68 |
16 | GARCÍA CORTINA Iván | 77 |
17 | ANGULO Antonio | 67 |
18 | LIVYNS Arjen | 58 |
19 | ASKEY Lewis | 75 |