Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Watson
1
68 kgGautherat
2
70 kgRomeo
3
75 kgPenhoët
4
64 kgCanal
5
70 kgFoldager
6
69 kgGruel
7
70 kgJanssen
9
67 kgMoro
11
81 kgMahoudo
12
61 kgHennequin
13
64 kgSerrano
17
60 kgZubeldia
19
72 kgBénéteau
20
58 kgGuardeño
22
62 kgHue
23
64 kgVerbrugghe
24
64 kgRootkin-Gray
25
67 kgLabrosse
26
65 kgCrommelinck
27
60 kgJulien
28
70 kg
1
68 kgGautherat
2
70 kgRomeo
3
75 kgPenhoët
4
64 kgCanal
5
70 kgFoldager
6
69 kgGruel
7
70 kgJanssen
9
67 kgMoro
11
81 kgMahoudo
12
61 kgHennequin
13
64 kgSerrano
17
60 kgZubeldia
19
72 kgBénéteau
20
58 kgGuardeño
22
62 kgHue
23
64 kgVerbrugghe
24
64 kgRootkin-Gray
25
67 kgLabrosse
26
65 kgCrommelinck
27
60 kgJulien
28
70 kg
Weight (KG) →
Result →
81
58
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | WATSON Samuel | 68 |
2 | GAUTHERAT Pierre | 70 |
3 | ROMEO Iván | 75 |
4 | PENHOËT Paul | 64 |
5 | CANAL Carlos | 70 |
6 | FOLDAGER Anders | 69 |
7 | GRUEL Thibaud | 70 |
9 | JANSSEN Lucas | 67 |
11 | MORO Manlio | 81 |
12 | MAHOUDO Nolann | 61 |
13 | HENNEQUIN Paul | 64 |
17 | SERRANO Javier | 60 |
19 | ZUBELDIA Unai | 72 |
20 | BÉNÉTEAU Lucas | 58 |
22 | GUARDEÑO Jaume | 62 |
23 | HUE Antoine | 64 |
24 | VERBRUGGHE Jens | 64 |
25 | ROOTKIN-GRAY Jack | 67 |
26 | LABROSSE Jordan | 65 |
27 | CROMMELINCK Melvin | 60 |
28 | JULIEN Matisse | 70 |