Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.3 * weight + 398
This means that on average for every extra kilogram weight a rider loses -3.3 positions in the result.
Martín
1
60 kgJaladeau
2
63 kgRetailleau
4
64 kgHue
5
64 kgNorsgaard
6
88 kgMaas
7
70 kgFetter
8
70 kgLeveau
9
67 kgRomeo
10
75 kgOwsian
11
66 kgSorarrain
13
76 kgSevilla
14
64 kgFerron
15
67 kgMorin
16
74 kgFoldager
17
69 kgSerrano
991
60 kgSarreau
991
76 kgCampenaerts
991
68 kg
1
60 kgJaladeau
2
63 kgRetailleau
4
64 kgHue
5
64 kgNorsgaard
6
88 kgMaas
7
70 kgFetter
8
70 kgLeveau
9
67 kgRomeo
10
75 kgOwsian
11
66 kgSorarrain
13
76 kgSevilla
14
64 kgFerron
15
67 kgMorin
16
74 kgFoldager
17
69 kgSerrano
991
60 kgSarreau
991
76 kgCampenaerts
991
68 kg
Weight (KG) →
Result →
88
60
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | MARTÍN Alex | 60 |
2 | JALADEAU Artus | 63 |
4 | RETAILLEAU Valentin | 64 |
5 | HUE Antoine | 64 |
6 | NORSGAARD Mathias | 88 |
7 | MAAS Jan | 70 |
8 | FETTER Erik | 70 |
9 | LEVEAU Jérémy | 67 |
10 | ROMEO Iván | 75 |
11 | OWSIAN Łukasz | 66 |
13 | SORARRAIN Gorka | 76 |
14 | SEVILLA Diego Pablo | 64 |
15 | FERRON Valentin | 67 |
16 | MORIN Emmanuel | 74 |
17 | FOLDAGER Anders | 69 |
991 | SERRANO Javier | 60 |
991 | SARREAU Marc | 76 |
991 | CAMPENAERTS Victor | 68 |