Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 33
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Ballerini
2
78 kgTchmil
3
75 kgNevens
6
58 kgBaguet
7
67 kgHamburger
9
58 kgSimon
11
70 kgWauters
13
73 kgBartoli
19
65 kgDuclos-Lassalle
20
73 kgScirea
22
80 kgMagalhães Azevedo
28
70 kgVerstrepen
31
66 kgCapelle
33
73 kgSvorada
35
76 kgThijs
40
69 kgFornaciari
43
80 kgSpruch
45
68 kgHoffman
52
80 kg
2
78 kgTchmil
3
75 kgNevens
6
58 kgBaguet
7
67 kgHamburger
9
58 kgSimon
11
70 kgWauters
13
73 kgBartoli
19
65 kgDuclos-Lassalle
20
73 kgScirea
22
80 kgMagalhães Azevedo
28
70 kgVerstrepen
31
66 kgCapelle
33
73 kgSvorada
35
76 kgThijs
40
69 kgFornaciari
43
80 kgSpruch
45
68 kgHoffman
52
80 kg
Weight (KG) →
Result →
80
58
2
52
# | Rider | Weight (KG) |
---|---|---|
2 | BALLERINI Franco | 78 |
3 | TCHMIL Andrei | 75 |
6 | NEVENS Jan | 58 |
7 | BAGUET Serge | 67 |
9 | HAMBURGER Bo | 58 |
11 | SIMON François | 70 |
13 | WAUTERS Marc | 73 |
19 | BARTOLI Michele | 65 |
20 | DUCLOS-LASSALLE Gilbert | 73 |
22 | SCIREA Mario | 80 |
28 | MAGALHÃES AZEVEDO Wanderley | 70 |
31 | VERSTREPEN Johan | 66 |
33 | CAPELLE Christophe | 73 |
35 | SVORADA Ján | 76 |
40 | THIJS Erwin | 69 |
43 | FORNACIARI Paolo | 80 |
45 | SPRUCH Zbigniew | 68 |
52 | HOFFMAN Tristan | 80 |