Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 81
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Museeuw
1
71 kgden Bakker
4
71 kgTchmil
5
75 kgMerckx
6
77 kgThijs
7
69 kgSørensen
9
70 kgBoogerd
10
62 kgVasseur
11
70 kgGuesdon
12
73 kgO'Grady
14
73 kgAerts
15
68 kgJulich
18
68 kgBrasi
21
67 kgPlanckaert
22
70 kgVerheyen
23
68 kgMazzoleni
26
67 kgBrożyna
30
65 kgHamilton
31
65 kgBlaudzun
32
66 kgde Jongh
33
76 kgJemison
36
71 kgBreukink
37
70 kgStreel
39
69 kg
1
71 kgden Bakker
4
71 kgTchmil
5
75 kgMerckx
6
77 kgThijs
7
69 kgSørensen
9
70 kgBoogerd
10
62 kgVasseur
11
70 kgGuesdon
12
73 kgO'Grady
14
73 kgAerts
15
68 kgJulich
18
68 kgBrasi
21
67 kgPlanckaert
22
70 kgVerheyen
23
68 kgMazzoleni
26
67 kgBrożyna
30
65 kgHamilton
31
65 kgBlaudzun
32
66 kgde Jongh
33
76 kgJemison
36
71 kgBreukink
37
70 kgStreel
39
69 kg
Weight (KG) →
Result →
77
62
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | MUSEEUW Johan | 71 |
4 | DEN BAKKER Maarten | 71 |
5 | TCHMIL Andrei | 75 |
6 | MERCKX Axel | 77 |
7 | THIJS Erwin | 69 |
9 | SØRENSEN Rolf | 70 |
10 | BOOGERD Michael | 62 |
11 | VASSEUR Cédric | 70 |
12 | GUESDON Frédéric | 73 |
14 | O'GRADY Stuart | 73 |
15 | AERTS Mario | 68 |
18 | JULICH Bobby | 68 |
21 | BRASI Rossano | 67 |
22 | PLANCKAERT Jo | 70 |
23 | VERHEYEN Geert | 68 |
26 | MAZZOLENI Eddy | 67 |
30 | BROŻYNA Tomasz | 65 |
31 | HAMILTON Tyler | 65 |
32 | BLAUDZUN Michael | 66 |
33 | DE JONGH Steven | 76 |
36 | JEMISON Marty | 71 |
37 | BREUKINK Erik | 70 |
39 | STREEL Marc | 69 |