Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Museeuw
1
71 kgMattan
2
69 kgSørensen
3
70 kgMarzoli
4
61 kgPeeters
5
76 kgFarazijn
6
69 kgSkibby
7
70 kgBoogerd
8
62 kgHvastija
9
75 kgVerheyen
10
68 kgThijs
11
69 kgden Bakker
13
71 kgLotz
14
76 kgBartoli
15
65 kgScheirlinckx
21
67 kgPiątek
22
71 kgVoskamp
23
75 kgNardello
24
74 kgLeukemans
25
67 kg
1
71 kgMattan
2
69 kgSørensen
3
70 kgMarzoli
4
61 kgPeeters
5
76 kgFarazijn
6
69 kgSkibby
7
70 kgBoogerd
8
62 kgHvastija
9
75 kgVerheyen
10
68 kgThijs
11
69 kgden Bakker
13
71 kgLotz
14
76 kgBartoli
15
65 kgScheirlinckx
21
67 kgPiątek
22
71 kgVoskamp
23
75 kgNardello
24
74 kgLeukemans
25
67 kg
Weight (KG) →
Result →
76
61
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MUSEEUW Johan | 71 |
2 | MATTAN Nico | 69 |
3 | SØRENSEN Rolf | 70 |
4 | MARZOLI Ruggero | 61 |
5 | PEETERS Wilfried | 76 |
6 | FARAZIJN Peter | 69 |
7 | SKIBBY Jesper | 70 |
8 | BOOGERD Michael | 62 |
9 | HVASTIJA Martin | 75 |
10 | VERHEYEN Geert | 68 |
11 | THIJS Erwin | 69 |
13 | DEN BAKKER Maarten | 71 |
14 | LOTZ Marc | 76 |
15 | BARTOLI Michele | 65 |
21 | SCHEIRLINCKX Bert | 67 |
22 | PIĄTEK Zbigniew | 71 |
23 | VOSKAMP Bart | 75 |
24 | NARDELLO Daniele | 74 |
25 | LEUKEMANS Björn | 67 |