Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Boogerd
1
62 kgSunderland
2
65 kgMerckx
3
77 kgBruylandts
4
63 kgDierckxsens
5
71 kgLotz
6
76 kgVerheyen
7
68 kgCasarotto
8
74 kgKroon
9
67 kgNardello
10
74 kgVoskamp
11
75 kgBortolami
12
73 kgDe Waele
13
62 kgFerrari
14
74 kgSerpellini
15
75 kgden Bakker
18
71 kgVasseur
19
70 kgSørensen
21
70 kgPlanckaert
22
70 kgGustov
24
64 kgTrenti
26
68 kgVande Velde
27
69 kgDe Groote
28
71 kg
1
62 kgSunderland
2
65 kgMerckx
3
77 kgBruylandts
4
63 kgDierckxsens
5
71 kgLotz
6
76 kgVerheyen
7
68 kgCasarotto
8
74 kgKroon
9
67 kgNardello
10
74 kgVoskamp
11
75 kgBortolami
12
73 kgDe Waele
13
62 kgFerrari
14
74 kgSerpellini
15
75 kgden Bakker
18
71 kgVasseur
19
70 kgSørensen
21
70 kgPlanckaert
22
70 kgGustov
24
64 kgTrenti
26
68 kgVande Velde
27
69 kgDe Groote
28
71 kg
Weight (KG) →
Result →
77
62
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | BOOGERD Michael | 62 |
2 | SUNDERLAND Scott | 65 |
3 | MERCKX Axel | 77 |
4 | BRUYLANDTS Dave | 63 |
5 | DIERCKXSENS Ludo | 71 |
6 | LOTZ Marc | 76 |
7 | VERHEYEN Geert | 68 |
8 | CASAROTTO Davide | 74 |
9 | KROON Karsten | 67 |
10 | NARDELLO Daniele | 74 |
11 | VOSKAMP Bart | 75 |
12 | BORTOLAMI Gianluca | 73 |
13 | DE WAELE Fabien | 62 |
14 | FERRARI Diego | 74 |
15 | SERPELLINI Marco | 75 |
18 | DEN BAKKER Maarten | 71 |
19 | VASSEUR Cédric | 70 |
21 | SØRENSEN Rolf | 70 |
22 | PLANCKAERT Jo | 70 |
24 | GUSTOV Volodymyr | 64 |
26 | TRENTI Guido | 68 |
27 | VANDE VELDE Christian | 69 |
28 | DE GROOTE Thierry | 71 |