Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Tchmil
1
75 kgVirenque
2
65 kgHeppner
3
69 kgHervé
5
62 kgBrochard
7
68 kgVasseur
8
70 kgRous
10
70 kgZamana
15
74 kgBaguet
16
67 kgMadouas
18
70 kgLoda
19
73 kgHoffman
20
80 kgSypytkowski
21
76 kgMichaelsen
22
79 kgPiątek
24
71 kgHolm Sørensen
25
77 kgBlijlevens
29
70 kgHeulot
30
69 kgArrieta
31
68 kgRobin
32
63 kgRué
35
74 kgAuger
38
78 kgAldag
39
75 kgBaldato
40
60 kg
1
75 kgVirenque
2
65 kgHeppner
3
69 kgHervé
5
62 kgBrochard
7
68 kgVasseur
8
70 kgRous
10
70 kgZamana
15
74 kgBaguet
16
67 kgMadouas
18
70 kgLoda
19
73 kgHoffman
20
80 kgSypytkowski
21
76 kgMichaelsen
22
79 kgPiątek
24
71 kgHolm Sørensen
25
77 kgBlijlevens
29
70 kgHeulot
30
69 kgArrieta
31
68 kgRobin
32
63 kgRué
35
74 kgAuger
38
78 kgAldag
39
75 kgBaldato
40
60 kg
Weight (KG) →
Result →
80
60
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | TCHMIL Andrei | 75 |
2 | VIRENQUE Richard | 65 |
3 | HEPPNER Jens | 69 |
5 | HERVÉ Pascal | 62 |
7 | BROCHARD Laurent | 68 |
8 | VASSEUR Cédric | 70 |
10 | ROUS Didier | 70 |
15 | ZAMANA Cezary | 74 |
16 | BAGUET Serge | 67 |
18 | MADOUAS Laurent | 70 |
19 | LODA Nicola | 73 |
20 | HOFFMAN Tristan | 80 |
21 | SYPYTKOWSKI Andrzej | 76 |
22 | MICHAELSEN Lars | 79 |
24 | PIĄTEK Zbigniew | 71 |
25 | HOLM SØRENSEN Brian | 77 |
29 | BLIJLEVENS Jeroen | 70 |
30 | HEULOT Stéphane | 69 |
31 | ARRIETA José Luis | 68 |
32 | ROBIN Jean-Cyril | 63 |
35 | RUÉ Gérard | 74 |
38 | AUGER Ludovic | 78 |
39 | ALDAG Rolf | 75 |
40 | BALDATO Fabio | 60 |