Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 74
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Lammertink
1
61 kgNovák
2
71 kgOwsian
3
66 kgVan Rooy
5
70 kgHelven
6
74 kgMrożek
7
66 kgVallée
8
79 kgvan der Hoorn
12
73 kgReinhardt
14
72 kgDe Bie
15
65 kgPrevar
23
64 kgRoosen
25
78 kgGradek
34
83 kgWiśniowski
36
78 kgStöhr
39
66 kgDemoitié
45
69 kgČerný
46
75 kgPiaskowy
59
60 kgBernas
64
77 kgTurek
69
72 kgWarnier
70
71 kgStöhr
93
72 kgAhiyevich
99
70 kgKolář
107
90 kg
1
61 kgNovák
2
71 kgOwsian
3
66 kgVan Rooy
5
70 kgHelven
6
74 kgMrożek
7
66 kgVallée
8
79 kgvan der Hoorn
12
73 kgReinhardt
14
72 kgDe Bie
15
65 kgPrevar
23
64 kgRoosen
25
78 kgGradek
34
83 kgWiśniowski
36
78 kgStöhr
39
66 kgDemoitié
45
69 kgČerný
46
75 kgPiaskowy
59
60 kgBernas
64
77 kgTurek
69
72 kgWarnier
70
71 kgStöhr
93
72 kgAhiyevich
99
70 kgKolář
107
90 kg
Weight (KG) →
Result →
90
60
1
107
# | Rider | Weight (KG) |
---|---|---|
1 | LAMMERTINK Maurits | 61 |
2 | NOVÁK Jakub | 71 |
3 | OWSIAN Łukasz | 66 |
5 | VAN ROOY Kenneth | 70 |
6 | HELVEN Sander | 74 |
7 | MROŻEK Marcin | 66 |
8 | VALLÉE Boris | 79 |
12 | VAN DER HOORN Taco | 73 |
14 | REINHARDT Theo | 72 |
15 | DE BIE Sean | 65 |
23 | PREVAR Oleksandr | 64 |
25 | ROOSEN Timo | 78 |
34 | GRADEK Kamil | 83 |
36 | WIŚNIOWSKI Łukasz | 78 |
39 | STÖHR Pavel | 66 |
45 | DEMOITIÉ Antoine | 69 |
46 | ČERNÝ Josef | 75 |
59 | PIASKOWY Emanuel | 60 |
64 | BERNAS Paweł | 77 |
69 | TUREK Daniel | 72 |
70 | WARNIER Antoine | 71 |
93 | STÖHR Ján | 72 |
99 | AHIYEVICH Aleh | 70 |
107 | KOLÁŘ Michael | 90 |