Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 76
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Lammertink
1
61 kgNovák
2
71 kgOwsian
3
66 kgVan Rooy
5
70 kgHelven
6
74 kgMrożek
7
66 kgReinhardt
9
72 kgVallée
10
79 kgDe Bie
11
65 kgPrevar
20
64 kgRoosen
22
78 kgGradek
32
83 kgvan der Hoorn
34
73 kgWiśniowski
35
78 kgStöhr
38
66 kgDemoitié
44
69 kgČerný
45
75 kgPiaskowy
59
60 kgBernas
64
77 kgTurek
69
72 kgWarnier
70
71 kgStöhr
93
72 kgAhiyevich
99
70 kgKolář
106
90 kg
1
61 kgNovák
2
71 kgOwsian
3
66 kgVan Rooy
5
70 kgHelven
6
74 kgMrożek
7
66 kgReinhardt
9
72 kgVallée
10
79 kgDe Bie
11
65 kgPrevar
20
64 kgRoosen
22
78 kgGradek
32
83 kgvan der Hoorn
34
73 kgWiśniowski
35
78 kgStöhr
38
66 kgDemoitié
44
69 kgČerný
45
75 kgPiaskowy
59
60 kgBernas
64
77 kgTurek
69
72 kgWarnier
70
71 kgStöhr
93
72 kgAhiyevich
99
70 kgKolář
106
90 kg
Weight (KG) →
Result →
90
60
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | LAMMERTINK Maurits | 61 |
2 | NOVÁK Jakub | 71 |
3 | OWSIAN Łukasz | 66 |
5 | VAN ROOY Kenneth | 70 |
6 | HELVEN Sander | 74 |
7 | MROŻEK Marcin | 66 |
9 | REINHARDT Theo | 72 |
10 | VALLÉE Boris | 79 |
11 | DE BIE Sean | 65 |
20 | PREVAR Oleksandr | 64 |
22 | ROOSEN Timo | 78 |
32 | GRADEK Kamil | 83 |
34 | VAN DER HOORN Taco | 73 |
35 | WIŚNIOWSKI Łukasz | 78 |
38 | STÖHR Pavel | 66 |
44 | DEMOITIÉ Antoine | 69 |
45 | ČERNÝ Josef | 75 |
59 | PIASKOWY Emanuel | 60 |
64 | BERNAS Paweł | 77 |
69 | TUREK Daniel | 72 |
70 | WARNIER Antoine | 71 |
93 | STÖHR Ján | 72 |
99 | AHIYEVICH Aleh | 70 |
106 | KOLÁŘ Michael | 90 |