Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Meijers
1
68 kgBaška
2
74 kgKasperkiewicz
3
71 kgKoch
4
75 kgTurek
6
72 kgStosz
9
70 kgPerry
13
71 kgVallée
20
79 kgKerf
23
71 kgVan Gestel
24
74 kgMamykin
29
62 kgRickaert
30
88 kgVergaerde
31
74 kgSykala
32
72 kgWillwohl
33
67 kgKnaup
36
61 kgRoosen
37
78 kgBouwman
38
60 kgKukrle
43
73 kgDubovski
50
75 kgBeyer
51
75 kgGrabis
52
75 kg
1
68 kgBaška
2
74 kgKasperkiewicz
3
71 kgKoch
4
75 kgTurek
6
72 kgStosz
9
70 kgPerry
13
71 kgVallée
20
79 kgKerf
23
71 kgVan Gestel
24
74 kgMamykin
29
62 kgRickaert
30
88 kgVergaerde
31
74 kgSykala
32
72 kgWillwohl
33
67 kgKnaup
36
61 kgRoosen
37
78 kgBouwman
38
60 kgKukrle
43
73 kgDubovski
50
75 kgBeyer
51
75 kgGrabis
52
75 kg
Weight (KG) →
Result →
88
60
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | MEIJERS Jeroen | 68 |
2 | BAŠKA Erik | 74 |
3 | KASPERKIEWICZ Przemysław | 71 |
4 | KOCH Jonas | 75 |
6 | TUREK Daniel | 72 |
9 | STOSZ Patryk | 70 |
13 | PERRY Benjamin | 71 |
20 | VALLÉE Boris | 79 |
23 | KERF Jerome | 71 |
24 | VAN GESTEL Dries | 74 |
29 | MAMYKIN Matvey | 62 |
30 | RICKAERT Jonas | 88 |
31 | VERGAERDE Otto | 74 |
32 | SYKALA Wojciech | 72 |
33 | WILLWOHL Willi | 67 |
36 | KNAUP Tobias | 61 |
37 | ROOSEN Timo | 78 |
38 | BOUWMAN Koen | 60 |
43 | KUKRLE Michael | 73 |
50 | DUBOVSKI Vladzislau | 75 |
51 | BEYER Maximilian | 75 |
52 | GRABIS Mateusz | 75 |