Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Grosu
1
68 kgCapiot
2
69 kgKasperkiewicz
3
71 kgWillwohl
4
67 kgSisr
6
72 kgShumov
7
65 kgKerf
9
71 kgMühlberger
10
64 kgMcLay
13
72 kgNeilands
14
69 kgStosz
19
70 kgGabburo
20
63 kgTurek
23
72 kgBouwman
25
60 kgBaška
26
74 kgGogl
27
71 kgLiepiņš
28
67 kgReinders
29
78.1 kgWarnier
30
71 kgSoballa
33
71 kgRekita
37
70 kgKasperkiewicz
40
67 kgSchlegel
41
72 kgMertz
49
70 kg
1
68 kgCapiot
2
69 kgKasperkiewicz
3
71 kgWillwohl
4
67 kgSisr
6
72 kgShumov
7
65 kgKerf
9
71 kgMühlberger
10
64 kgMcLay
13
72 kgNeilands
14
69 kgStosz
19
70 kgGabburo
20
63 kgTurek
23
72 kgBouwman
25
60 kgBaška
26
74 kgGogl
27
71 kgLiepiņš
28
67 kgReinders
29
78.1 kgWarnier
30
71 kgSoballa
33
71 kgRekita
37
70 kgKasperkiewicz
40
67 kgSchlegel
41
72 kgMertz
49
70 kg
Weight (KG) →
Result →
78.1
60
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | GROSU Eduard-Michael | 68 |
2 | CAPIOT Amaury | 69 |
3 | KASPERKIEWICZ Przemysław | 71 |
4 | WILLWOHL Willi | 67 |
6 | SISR František | 72 |
7 | SHUMOV Nikolai | 65 |
9 | KERF Jerome | 71 |
10 | MÜHLBERGER Gregor | 64 |
13 | MCLAY Daniel | 72 |
14 | NEILANDS Krists | 69 |
19 | STOSZ Patryk | 70 |
20 | GABBURO Davide | 63 |
23 | TUREK Daniel | 72 |
25 | BOUWMAN Koen | 60 |
26 | BAŠKA Erik | 74 |
27 | GOGL Michael | 71 |
28 | LIEPIŅŠ Emīls | 67 |
29 | REINDERS Elmar | 78.1 |
30 | WARNIER Antoine | 71 |
33 | SOBALLA Carl | 71 |
37 | REKITA Szymon | 70 |
40 | KASPERKIEWICZ Maciej | 67 |
41 | SCHLEGEL Michal | 72 |
49 | MERTZ Rémy | 70 |