Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Grosu
1
68 kgMühlberger
2
64 kgKerf
4
71 kgKasperkiewicz
6
71 kgCapiot
7
69 kgSisr
9
72 kgWillwohl
11
67 kgBouwman
13
60 kgGogl
14
71 kgLiepiņš
17
67 kgReinders
18
78.1 kgMcLay
19
72 kgWarnier
21
71 kgTurek
23
72 kgSoballa
24
71 kgGabburo
25
63 kgShumov
26
65 kgNeilands
27
69 kgRekita
29
70 kgKoch
30
75 kgSchlegel
31
72 kgPaluta
34
65 kgStosz
38
70 kg
1
68 kgMühlberger
2
64 kgKerf
4
71 kgKasperkiewicz
6
71 kgCapiot
7
69 kgSisr
9
72 kgWillwohl
11
67 kgBouwman
13
60 kgGogl
14
71 kgLiepiņš
17
67 kgReinders
18
78.1 kgMcLay
19
72 kgWarnier
21
71 kgTurek
23
72 kgSoballa
24
71 kgGabburo
25
63 kgShumov
26
65 kgNeilands
27
69 kgRekita
29
70 kgKoch
30
75 kgSchlegel
31
72 kgPaluta
34
65 kgStosz
38
70 kg
Weight (KG) →
Result →
78.1
60
1
38
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | GROSU Eduard-Michael | 68 |
| 2 | MÜHLBERGER Gregor | 64 |
| 4 | KERF Jerome | 71 |
| 6 | KASPERKIEWICZ Przemysław | 71 |
| 7 | CAPIOT Amaury | 69 |
| 9 | SISR František | 72 |
| 11 | WILLWOHL Willi | 67 |
| 13 | BOUWMAN Koen | 60 |
| 14 | GOGL Michael | 71 |
| 17 | LIEPIŅŠ Emīls | 67 |
| 18 | REINDERS Elmar | 78.1 |
| 19 | MCLAY Daniel | 72 |
| 21 | WARNIER Antoine | 71 |
| 23 | TUREK Daniel | 72 |
| 24 | SOBALLA Carl | 71 |
| 25 | GABBURO Davide | 63 |
| 26 | SHUMOV Nikolai | 65 |
| 27 | NEILANDS Krists | 69 |
| 29 | REKITA Szymon | 70 |
| 30 | KOCH Jonas | 75 |
| 31 | SCHLEGEL Michal | 72 |
| 34 | PALUTA Michał | 65 |
| 38 | STOSZ Patryk | 70 |