Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Grosu
1
68 kgCapiot
2
69 kgKasperkiewicz
3
71 kgMühlberger
4
64 kgSisr
6
72 kgKerf
7
71 kgNeilands
10
69 kgWillwohl
15
67 kgTurek
17
72 kgBouwman
19
60 kgGogl
21
71 kgLiepiņš
24
67 kgGabburo
25
63 kgReinders
26
78.1 kgMcLay
27
72 kgWarnier
29
71 kgSoballa
30
71 kgShumov
31
65 kgRekita
34
70 kgKoch
35
75 kgKasperkiewicz
36
67 kgSchlegel
37
72 kgPaluta
39
65 kgStosz
43
70 kg
1
68 kgCapiot
2
69 kgKasperkiewicz
3
71 kgMühlberger
4
64 kgSisr
6
72 kgKerf
7
71 kgNeilands
10
69 kgWillwohl
15
67 kgTurek
17
72 kgBouwman
19
60 kgGogl
21
71 kgLiepiņš
24
67 kgGabburo
25
63 kgReinders
26
78.1 kgMcLay
27
72 kgWarnier
29
71 kgSoballa
30
71 kgShumov
31
65 kgRekita
34
70 kgKoch
35
75 kgKasperkiewicz
36
67 kgSchlegel
37
72 kgPaluta
39
65 kgStosz
43
70 kg
Weight (KG) →
Result →
78.1
60
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | GROSU Eduard-Michael | 68 |
2 | CAPIOT Amaury | 69 |
3 | KASPERKIEWICZ Przemysław | 71 |
4 | MÜHLBERGER Gregor | 64 |
6 | SISR František | 72 |
7 | KERF Jerome | 71 |
10 | NEILANDS Krists | 69 |
15 | WILLWOHL Willi | 67 |
17 | TUREK Daniel | 72 |
19 | BOUWMAN Koen | 60 |
21 | GOGL Michael | 71 |
24 | LIEPIŅŠ Emīls | 67 |
25 | GABBURO Davide | 63 |
26 | REINDERS Elmar | 78.1 |
27 | MCLAY Daniel | 72 |
29 | WARNIER Antoine | 71 |
30 | SOBALLA Carl | 71 |
31 | SHUMOV Nikolai | 65 |
34 | REKITA Szymon | 70 |
35 | KOCH Jonas | 75 |
36 | KASPERKIEWICZ Maciej | 67 |
37 | SCHLEGEL Michal | 72 |
39 | PALUTA Michał | 65 |
43 | STOSZ Patryk | 70 |