Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 25
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Cuadros
1
67 kgWachter
2
72 kgBrkic
4
58 kgVan Gompel
5
70 kgBrożyna
6
71 kgMertz
9
70 kgJanssen
11
76 kgDuquennoy
12
75 kgBellan
13
61 kgKoch
16
68 kgBackofen
17
62 kgPelikán
28
76 kgKazimierczak
29
73 kgPaluta
32
65 kgTagliani
33
70 kgMenten
34
68 kgNatarov
36
68 kgSix
37
72 kgRohde
40
75 kgNeuman
43
72 kgFilutás
53
68 kgBerger
54
66 kgPorzner
56
75 kg
1
67 kgWachter
2
72 kgBrkic
4
58 kgVan Gompel
5
70 kgBrożyna
6
71 kgMertz
9
70 kgJanssen
11
76 kgDuquennoy
12
75 kgBellan
13
61 kgKoch
16
68 kgBackofen
17
62 kgPelikán
28
76 kgKazimierczak
29
73 kgPaluta
32
65 kgTagliani
33
70 kgMenten
34
68 kgNatarov
36
68 kgSix
37
72 kgRohde
40
75 kgNeuman
43
72 kgFilutás
53
68 kgBerger
54
66 kgPorzner
56
75 kg
Weight (KG) →
Result →
76
58
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | CUADROS Álvaro | 67 |
2 | WACHTER Alexander | 72 |
4 | BRKIC Benjamin | 58 |
5 | VAN GOMPEL Mathias | 70 |
6 | BROŻYNA Piotr | 71 |
9 | MERTZ Rémy | 70 |
11 | JANSSEN Adriaan | 76 |
12 | DUQUENNOY Jimmy | 75 |
13 | BELLAN Juraj | 61 |
16 | KOCH Christian | 68 |
17 | BACKOFEN Moritz | 62 |
28 | PELIKÁN János | 76 |
29 | KAZIMIERCZAK Mateusz | 73 |
32 | PALUTA Michał | 65 |
33 | TAGLIANI Filippo | 70 |
34 | MENTEN Milan | 68 |
36 | NATAROV Yuriy | 68 |
37 | SIX Franklin | 72 |
40 | ROHDE Leon | 75 |
43 | NEUMAN Dominik | 72 |
53 | FILUTÁS Viktor | 68 |
54 | BERGER Leon | 66 |
56 | PORZNER Manuel | 75 |