Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Burger
1
74 kgDi Felice
3
70 kgKoch
5
68 kgDonegà
6
65 kgBax
8
78 kgKrawczyk
9
79 kgBais
10
66 kgDina
11
67 kgBogusławski
12
77 kgAniołkowski
13
68 kgMaciejuk
16
78 kgLašinis
17
69 kgMałecki
19
69 kgSzóstka
20
63 kgvan den Berg
21
73 kgvan den Dool
23
68 kgTracz
26
74 kgPękala
28
65 kgStaniszewski
30
77 kgPrimožič
33
60 kgJagiela
34
64 kg
1
74 kgDi Felice
3
70 kgKoch
5
68 kgDonegà
6
65 kgBax
8
78 kgKrawczyk
9
79 kgBais
10
66 kgDina
11
67 kgBogusławski
12
77 kgAniołkowski
13
68 kgMaciejuk
16
78 kgLašinis
17
69 kgMałecki
19
69 kgSzóstka
20
63 kgvan den Berg
21
73 kgvan den Dool
23
68 kgTracz
26
74 kgPękala
28
65 kgStaniszewski
30
77 kgPrimožič
33
60 kgJagiela
34
64 kg
Weight (KG) →
Result →
79
60
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | BURGER Sven | 74 |
3 | DI FELICE Francesco | 70 |
5 | KOCH Christian | 68 |
6 | DONEGÀ Matteo | 65 |
8 | BAX Sjoerd | 78 |
9 | KRAWCZYK Szymon | 79 |
10 | BAIS Mattia | 66 |
11 | DINA Márton | 67 |
12 | BOGUSŁAWSKI Marceli | 77 |
13 | ANIOŁKOWSKI Stanisław | 68 |
16 | MACIEJUK Filip | 78 |
17 | LAŠINIS Venantas | 69 |
19 | MAŁECKI Kamil | 69 |
20 | SZÓSTKA Paweł | 63 |
21 | VAN DEN BERG Marijn | 73 |
23 | VAN DEN DOOL Jens | 68 |
26 | TRACZ Szymon | 74 |
28 | PĘKALA Piotr | 65 |
30 | STANISZEWSKI Daniel | 77 |
33 | PRIMOŽIČ Jaka | 60 |
34 | JAGIELA Adam | 64 |