Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Maciejuk
1
78 kgDonegà
2
65 kgvan den Dool
4
68 kgKrawczyk
6
79 kgŠtoček
7
80 kgMurias
8
65 kgTracz
10
74 kgvan den Berg
11
73 kgPrimožič
12
60 kgJagiela
13
64 kgPękala
14
65 kgSzóstka
16
63 kgBais
19
66 kgLavrič
24
64 kgJakala
26
69 kgTaebling
28
77 kgValter
29
65 kgManowski
30
66 kgTulner
33
62 kgde Jong
34
72 kgKostański
45
74 kgRojus
50
83 kgKrukowski
51
60 kg
1
78 kgDonegà
2
65 kgvan den Dool
4
68 kgKrawczyk
6
79 kgŠtoček
7
80 kgMurias
8
65 kgTracz
10
74 kgvan den Berg
11
73 kgPrimožič
12
60 kgJagiela
13
64 kgPękala
14
65 kgSzóstka
16
63 kgBais
19
66 kgLavrič
24
64 kgJakala
26
69 kgTaebling
28
77 kgValter
29
65 kgManowski
30
66 kgTulner
33
62 kgde Jong
34
72 kgKostański
45
74 kgRojus
50
83 kgKrukowski
51
60 kg
Weight (KG) →
Result →
83
60
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | MACIEJUK Filip | 78 |
2 | DONEGÀ Matteo | 65 |
4 | VAN DEN DOOL Jens | 68 |
6 | KRAWCZYK Szymon | 79 |
7 | ŠTOČEK Matúš | 80 |
8 | MURIAS Jakub | 65 |
10 | TRACZ Szymon | 74 |
11 | VAN DEN BERG Marijn | 73 |
12 | PRIMOŽIČ Jaka | 60 |
13 | JAGIELA Adam | 64 |
14 | PĘKALA Piotr | 65 |
16 | SZÓSTKA Paweł | 63 |
19 | BAIS Davide | 66 |
24 | LAVRIČ Martin | 64 |
26 | JAKALA Jakub | 69 |
28 | TAEBLING Paul | 77 |
29 | VALTER Attila | 65 |
30 | MANOWSKI Mateusz | 66 |
33 | TULNER Rens | 62 |
34 | DE JONG Timo | 72 |
45 | KOSTAŃSKI Mateusz | 74 |
50 | ROJUS Adomaitis | 83 |
51 | KRUKOWSKI Jan | 60 |