Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Dekker
1
80 kgAleotti
2
67 kgRudyk
3
76 kgDalla Valle
4
73 kgvan den Berg
5
73 kgBertone
6
64 kgBais
7
66 kgvan der Tuuk
10
64 kgPękala
11
65 kgWeulink
13
62 kgAniołkowski
14
68 kgKrawczyk
15
79 kgvan der Horst
16
62 kgPrimožič
17
60 kgMurias
18
65 kgVenchiarutti
19
64 kgWawrzyniak
20
65 kg
1
80 kgAleotti
2
67 kgRudyk
3
76 kgDalla Valle
4
73 kgvan den Berg
5
73 kgBertone
6
64 kgBais
7
66 kgvan der Tuuk
10
64 kgPękala
11
65 kgWeulink
13
62 kgAniołkowski
14
68 kgKrawczyk
15
79 kgvan der Horst
16
62 kgPrimožič
17
60 kgMurias
18
65 kgVenchiarutti
19
64 kgWawrzyniak
20
65 kg
Weight (KG) →
Result →
80
60
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKER David | 80 |
2 | ALEOTTI Giovanni | 67 |
3 | RUDYK Bartosz | 76 |
4 | DALLA VALLE Nicolas | 73 |
5 | VAN DEN BERG Marijn | 73 |
6 | BERTONE Filippo | 64 |
7 | BAIS Davide | 66 |
10 | VAN DER TUUK Danny | 64 |
11 | PĘKALA Piotr | 65 |
13 | WEULINK Meindert | 62 |
14 | ANIOŁKOWSKI Stanisław | 68 |
15 | KRAWCZYK Szymon | 79 |
16 | VAN DER HORST Dennis | 62 |
17 | PRIMOŽIČ Jaka | 60 |
18 | MURIAS Jakub | 65 |
19 | VENCHIARUTTI Nicola | 64 |
20 | WAWRZYNIAK Karol | 65 |