Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Miholjević
1
72 kgHajek
3
55 kgMarcellusi
4
62 kgJuneau
5
67 kgPapierski
6
81 kgHeming
7
68 kgKašpar
8
73 kgMaas
10
70 kgvan den Broek
13
70 kgDue Kaspersen
15
76 kgPomorski
18
76 kgJulien
19
70 kgPellizzari
20
66 kgBilyi
21
56 kgFrątczak
24
70 kgMusialik
27
63 kgVoltr
28
75 kgRasenberg
29
78 kgŻurek
31
63 kg
1
72 kgHajek
3
55 kgMarcellusi
4
62 kgJuneau
5
67 kgPapierski
6
81 kgHeming
7
68 kgKašpar
8
73 kgMaas
10
70 kgvan den Broek
13
70 kgDue Kaspersen
15
76 kgPomorski
18
76 kgJulien
19
70 kgPellizzari
20
66 kgBilyi
21
56 kgFrątczak
24
70 kgMusialik
27
63 kgVoltr
28
75 kgRasenberg
29
78 kgŻurek
31
63 kg
Weight (KG) →
Result →
81
55
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | MIHOLJEVIĆ Fran | 72 |
3 | HAJEK Alexander | 55 |
4 | MARCELLUSI Martin | 62 |
5 | JUNEAU Francis | 67 |
6 | PAPIERSKI Damian | 81 |
7 | HEMING Miká | 68 |
8 | KAŠPAR Jan | 73 |
10 | MAAS Marijn | 70 |
13 | VAN DEN BROEK Frank | 70 |
15 | DUE KASPERSEN Kasper | 76 |
18 | POMORSKI Michał | 76 |
19 | JULIEN Matisse | 70 |
20 | PELLIZZARI Giulio | 66 |
21 | BILYI Maksym | 56 |
24 | FRĄTCZAK Radosław | 70 |
27 | MUSIALIK Jakub | 63 |
28 | VOLTR Martin | 75 |
29 | RASENBERG Martijn | 78 |
31 | ŻUREK Jakub | 63 |