Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Miholjević
1
72 kgHeming
3
68 kgHajek
4
55 kgMarcellusi
5
62 kgPapierski
6
81 kgJuneau
8
67 kgPellizzari
11
66 kgPomorski
12
76 kgKašpar
14
73 kgDe Cassan
18
61 kgvan den Broek
21
70 kgBilyi
24
56 kgMiles
26
64 kgJulien
28
70 kgTurkulov
29
65 kgFrątczak
32
70 kgMusialik
35
63 kgVoltr
36
75 kgPutz
37
62 kgRasenberg
38
78 kgŻurek
40
63 kg
1
72 kgHeming
3
68 kgHajek
4
55 kgMarcellusi
5
62 kgPapierski
6
81 kgJuneau
8
67 kgPellizzari
11
66 kgPomorski
12
76 kgKašpar
14
73 kgDe Cassan
18
61 kgvan den Broek
21
70 kgBilyi
24
56 kgMiles
26
64 kgJulien
28
70 kgTurkulov
29
65 kgFrątczak
32
70 kgMusialik
35
63 kgVoltr
36
75 kgPutz
37
62 kgRasenberg
38
78 kgŻurek
40
63 kg
Weight (KG) →
Result →
81
55
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | MIHOLJEVIĆ Fran | 72 |
3 | HEMING Miká | 68 |
4 | HAJEK Alexander | 55 |
5 | MARCELLUSI Martin | 62 |
6 | PAPIERSKI Damian | 81 |
8 | JUNEAU Francis | 67 |
11 | PELLIZZARI Giulio | 66 |
12 | POMORSKI Michał | 76 |
14 | KAŠPAR Jan | 73 |
18 | DE CASSAN Davide | 61 |
21 | VAN DEN BROEK Frank | 70 |
24 | BILYI Maksym | 56 |
26 | MILES Carson | 64 |
28 | JULIEN Matisse | 70 |
29 | TURKULOV Luka | 65 |
32 | FRĄTCZAK Radosław | 70 |
35 | MUSIALIK Jakub | 63 |
36 | VOLTR Martin | 75 |
37 | PUTZ Sebastian | 62 |
38 | RASENBERG Martijn | 78 |
40 | ŻUREK Jakub | 63 |