Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 116
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Whitten
1
67 kgSmall
2
55 kgArmstrong
3
58 kgThomas
4
58 kgJackson
8
63 kgLuebke
10
54 kgBergen
13
64 kgPoidevin
18
56 kgKilburg
26
64 kgDoebel-Hickok
29
51 kgMiller
31
52 kgRoorda
32
70 kgRamsden
36
62 kgWong
45
51 kgClevenger
47
57 kgTeddergreen
67
51 kgBlais
79
53 kg
1
67 kgSmall
2
55 kgArmstrong
3
58 kgThomas
4
58 kgJackson
8
63 kgLuebke
10
54 kgBergen
13
64 kgPoidevin
18
56 kgKilburg
26
64 kgDoebel-Hickok
29
51 kgMiller
31
52 kgRoorda
32
70 kgRamsden
36
62 kgWong
45
51 kgClevenger
47
57 kgTeddergreen
67
51 kgBlais
79
53 kg
Weight (KG) →
Result →
70
51
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | WHITTEN Tara | 67 |
2 | SMALL Carmen | 55 |
3 | ARMSTRONG Kristin | 58 |
4 | THOMAS Leah | 58 |
8 | JACKSON Alison | 63 |
10 | LUEBKE Jennifer | 54 |
13 | BERGEN Sara | 64 |
18 | POIDEVIN Sara | 56 |
26 | KILBURG Mia | 64 |
29 | DOEBEL-HICKOK Krista | 51 |
31 | MILLER Amanda | 52 |
32 | ROORDA Stephanie | 70 |
36 | RAMSDEN Denise | 62 |
45 | WONG Melanie | 51 |
47 | CLEVENGER Erica | 57 |
67 | TEDDERGREEN Starla | 51 |
79 | BLAIS Marie-Soleil | 53 |