Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 97
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Cordon-Ragot
1
60 kgJeuland-Tranchant
2
61 kgMoberg
3
56 kgPolspoel
4
59 kgMajerus
5
56 kgBiannic
7
64 kgFournier
13
60 kgVekemans
17
52 kgKoster
21
56 kgEnsing
22
62 kgSanchis
25
56 kgSicot
46
58 kgHatteland Lima
51
65 kgRodríguez
56
57 kgDuval
58
53 kgBeveridge
59
55 kg
1
60 kgJeuland-Tranchant
2
61 kgMoberg
3
56 kgPolspoel
4
59 kgMajerus
5
56 kgBiannic
7
64 kgFournier
13
60 kgVekemans
17
52 kgKoster
21
56 kgEnsing
22
62 kgSanchis
25
56 kgSicot
46
58 kgHatteland Lima
51
65 kgRodríguez
56
57 kgDuval
58
53 kgBeveridge
59
55 kg
Weight (KG) →
Result →
65
52
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | CORDON-RAGOT Audrey | 60 |
2 | JEULAND-TRANCHANT Pascale | 61 |
3 | MOBERG Emilie | 56 |
4 | POLSPOEL Maaike | 59 |
5 | MAJERUS Christine | 56 |
7 | BIANNIC Aude | 64 |
13 | FOURNIER Roxane | 60 |
17 | VEKEMANS Anisha | 52 |
21 | KOSTER Anouska | 56 |
22 | ENSING Janneke | 62 |
25 | SANCHIS Anna | 56 |
46 | SICOT Marion | 58 |
51 | HATTELAND LIMA Tone | 65 |
56 | RODRÍGUEZ Gloria | 57 |
58 | DUVAL Eugénie | 53 |
59 | BEVERIDGE Julie | 55 |