Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 64
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Rich
1
82 kgCancellara
2
80 kgRoesems
3
81 kgBodrogi
4
79 kgRogers
5
74 kgNüttli
6
70 kgKrivtsov
7
72 kgVoigt
8
76 kgPetrov
9
70 kgPozzato
10
73 kgBelohvoščiks
11
70 kgFinot
12
65 kgSerpellini
13
75 kgVoskamp
15
75 kgCasar
16
63 kgDurand
17
76 kgStreel
19
69 kgGarmendia
22
68 kg
1
82 kgCancellara
2
80 kgRoesems
3
81 kgBodrogi
4
79 kgRogers
5
74 kgNüttli
6
70 kgKrivtsov
7
72 kgVoigt
8
76 kgPetrov
9
70 kgPozzato
10
73 kgBelohvoščiks
11
70 kgFinot
12
65 kgSerpellini
13
75 kgVoskamp
15
75 kgCasar
16
63 kgDurand
17
76 kgStreel
19
69 kgGarmendia
22
68 kg
Weight (KG) →
Result →
82
63
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | RICH Michael | 82 |
2 | CANCELLARA Fabian | 80 |
3 | ROESEMS Bert | 81 |
4 | BODROGI László | 79 |
5 | ROGERS Michael | 74 |
6 | NÜTTLI Jean | 70 |
7 | KRIVTSOV Yuriy | 72 |
8 | VOIGT Jens | 76 |
9 | PETROV Evgeni | 70 |
10 | POZZATO Filippo | 73 |
11 | BELOHVOŠČIKS Raivis | 70 |
12 | FINOT Frédéric | 65 |
13 | SERPELLINI Marco | 75 |
15 | VOSKAMP Bart | 75 |
16 | CASAR Sandy | 63 |
17 | DURAND Jacky | 76 |
19 | STREEL Marc | 69 |
22 | GARMENDIA Aitor | 68 |