Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Rich
1
82 kgRoesems
2
81 kgPeschel
3
72 kgLang
4
77 kgSeigneur
5
71 kgBodrogi
6
79 kgBelohvoščiks
7
70 kgNüttli
8
70 kgDay
9
68 kgKrivtsov
10
72 kgPinotti
11
67 kgHonchar
12
67 kgSanchez
13
75 kgVaitkus
14
75 kgGilbert
15
75 kgBouyer
16
65 kgBrard
17
74 kgDurand
18
76 kgRenier
20
69 kg
1
82 kgRoesems
2
81 kgPeschel
3
72 kgLang
4
77 kgSeigneur
5
71 kgBodrogi
6
79 kgBelohvoščiks
7
70 kgNüttli
8
70 kgDay
9
68 kgKrivtsov
10
72 kgPinotti
11
67 kgHonchar
12
67 kgSanchez
13
75 kgVaitkus
14
75 kgGilbert
15
75 kgBouyer
16
65 kgBrard
17
74 kgDurand
18
76 kgRenier
20
69 kg
Weight (KG) →
Result →
82
65
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | RICH Michael | 82 |
2 | ROESEMS Bert | 81 |
3 | PESCHEL Uwe | 72 |
4 | LANG Sebastian | 77 |
5 | SEIGNEUR Eddy | 71 |
6 | BODROGI László | 79 |
7 | BELOHVOŠČIKS Raivis | 70 |
8 | NÜTTLI Jean | 70 |
9 | DAY Benjamin | 68 |
10 | KRIVTSOV Yuriy | 72 |
11 | PINOTTI Marco | 67 |
12 | HONCHAR Serhiy | 67 |
13 | SANCHEZ Fabien | 75 |
14 | VAITKUS Tomas | 75 |
15 | GILBERT Philippe | 75 |
16 | BOUYER Franck | 65 |
17 | BRARD Florent | 74 |
18 | DURAND Jacky | 76 |
20 | RENIER Franck | 69 |