Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 55
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Sosenka
1
82 kgRogers
2
74 kgGusev
3
67 kgBelohvoščiks
4
70 kgKaisen
5
82 kgKrivtsov
6
72 kgCancellara
7
80 kgPinotti
8
67 kgFritsch
9
65 kgDay
10
68 kgLang
11
77 kgGilbert
12
75 kgFinot
13
65 kgKern
14
72 kgLelay
17
67 kgDuret
18
62 kgKostyuk
19
66 kgMuravyev
20
75 kgBouyer
21
65 kgJégou
22
71 kgHinault
23
63 kgSoutham
25
69 kg
1
82 kgRogers
2
74 kgGusev
3
67 kgBelohvoščiks
4
70 kgKaisen
5
82 kgKrivtsov
6
72 kgCancellara
7
80 kgPinotti
8
67 kgFritsch
9
65 kgDay
10
68 kgLang
11
77 kgGilbert
12
75 kgFinot
13
65 kgKern
14
72 kgLelay
17
67 kgDuret
18
62 kgKostyuk
19
66 kgMuravyev
20
75 kgBouyer
21
65 kgJégou
22
71 kgHinault
23
63 kgSoutham
25
69 kg
Weight (KG) →
Result →
82
62
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | SOSENKA Ondřej | 82 |
2 | ROGERS Michael | 74 |
3 | GUSEV Vladimir | 67 |
4 | BELOHVOŠČIKS Raivis | 70 |
5 | KAISEN Olivier | 82 |
6 | KRIVTSOV Yuriy | 72 |
7 | CANCELLARA Fabian | 80 |
8 | PINOTTI Marco | 67 |
9 | FRITSCH Nicolas | 65 |
10 | DAY Benjamin | 68 |
11 | LANG Sebastian | 77 |
12 | GILBERT Philippe | 75 |
13 | FINOT Frédéric | 65 |
14 | KERN Christophe | 72 |
17 | LELAY David | 67 |
18 | DURET Sébastien | 62 |
19 | KOSTYUK Denys | 66 |
20 | MURAVYEV Dmitriy | 75 |
21 | BOUYER Franck | 65 |
22 | JÉGOU Lilian | 71 |
23 | HINAULT Sébastien | 63 |
25 | SOUTHAM Tom | 69 |