Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Belohvoščiks
1
70 kgVandborg
2
75 kgHelminen
3
74 kgGusev
4
67 kgClement
5
66 kgKrivtsov
6
72 kgFritsch
8
65 kgQuinziato
9
74 kgVoeckler
10
71 kgLarsson
11
77 kgMcGee
12
72 kgLelay
13
67 kgKaisen
15
82 kgGrivko
16
70 kgJurčo
17
69 kgRoy
18
70 kgHorrillo
19
76 kgKern
20
72 kgSosenka
21
82 kgKvasina
22
72 kgDuret
23
62 kgDrujon
24
75 kg
1
70 kgVandborg
2
75 kgHelminen
3
74 kgGusev
4
67 kgClement
5
66 kgKrivtsov
6
72 kgFritsch
8
65 kgQuinziato
9
74 kgVoeckler
10
71 kgLarsson
11
77 kgMcGee
12
72 kgLelay
13
67 kgKaisen
15
82 kgGrivko
16
70 kgJurčo
17
69 kgRoy
18
70 kgHorrillo
19
76 kgKern
20
72 kgSosenka
21
82 kgKvasina
22
72 kgDuret
23
62 kgDrujon
24
75 kg
Weight (KG) →
Result →
82
62
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | BELOHVOŠČIKS Raivis | 70 |
2 | VANDBORG Brian Bach | 75 |
3 | HELMINEN Matti | 74 |
4 | GUSEV Vladimir | 67 |
5 | CLEMENT Stef | 66 |
6 | KRIVTSOV Yuriy | 72 |
8 | FRITSCH Nicolas | 65 |
9 | QUINZIATO Manuel | 74 |
10 | VOECKLER Thomas | 71 |
11 | LARSSON Gustav Erik | 77 |
12 | MCGEE Bradley | 72 |
13 | LELAY David | 67 |
15 | KAISEN Olivier | 82 |
16 | GRIVKO Andrey | 70 |
17 | JURČO Matej | 69 |
18 | ROY Jérémy | 70 |
19 | HORRILLO Pedro | 76 |
20 | KERN Christophe | 72 |
21 | SOSENKA Ondřej | 82 |
22 | KVASINA Matija | 72 |
23 | DURET Sébastien | 62 |
24 | DRUJON Mathieu | 75 |