Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Martin
1
75 kgChavanel
2
73 kgPhinney
3
82 kgRoy
4
70 kgBodrogi
5
79 kgOyarzún
6
66 kgBoaro
7
64 kgLarsson
8
77 kgKessiakoff
11
61 kgGazvoda
12
72 kgCataldo
13
64 kgMarczyński
15
70 kgDuret
16
62 kgFroome
17
68 kgDelaplace
18
65 kgMolard
19
62 kgPoux
20
70 kgPorte
21
62 kgMonier
22
75 kg
1
75 kgChavanel
2
73 kgPhinney
3
82 kgRoy
4
70 kgBodrogi
5
79 kgOyarzún
6
66 kgBoaro
7
64 kgLarsson
8
77 kgKessiakoff
11
61 kgGazvoda
12
72 kgCataldo
13
64 kgMarczyński
15
70 kgDuret
16
62 kgFroome
17
68 kgDelaplace
18
65 kgMolard
19
62 kgPoux
20
70 kgPorte
21
62 kgMonier
22
75 kg
Weight (KG) →
Result →
82
61
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | MARTIN Tony | 75 |
2 | CHAVANEL Sylvain | 73 |
3 | PHINNEY Taylor | 82 |
4 | ROY Jérémy | 70 |
5 | BODROGI László | 79 |
6 | OYARZÚN Carlos Iván | 66 |
7 | BOARO Manuele | 64 |
8 | LARSSON Gustav Erik | 77 |
11 | KESSIAKOFF Fredrik | 61 |
12 | GAZVODA Gregor | 72 |
13 | CATALDO Dario | 64 |
15 | MARCZYŃSKI Tomasz | 70 |
16 | DURET Sébastien | 62 |
17 | FROOME Chris | 68 |
18 | DELAPLACE Anthony | 65 |
19 | MOLARD Rudy | 62 |
20 | POUX Paul | 70 |
21 | PORTE Richie | 62 |
22 | MONIER Damien | 75 |