Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Martin
1
75 kgLarsson
2
77 kgChavanel
3
73 kgPinotti
4
67 kgLe Bon
5
70 kgOyarzún
6
66 kgKaisen
7
82 kgRoy
8
70 kgBaldo
9
73 kgDelaplace
10
65 kgWurf
12
71 kgWestra
13
74 kgMolard
15
62 kgŠiškevičius
16
80 kgNauleau
17
67 kgKeizer
18
72 kgGérard
19
70 kgCoquard
20
59 kgHurel
21
66 kgTulik
22
64 kgPoux
23
70 kg
1
75 kgLarsson
2
77 kgChavanel
3
73 kgPinotti
4
67 kgLe Bon
5
70 kgOyarzún
6
66 kgKaisen
7
82 kgRoy
8
70 kgBaldo
9
73 kgDelaplace
10
65 kgWurf
12
71 kgWestra
13
74 kgMolard
15
62 kgŠiškevičius
16
80 kgNauleau
17
67 kgKeizer
18
72 kgGérard
19
70 kgCoquard
20
59 kgHurel
21
66 kgTulik
22
64 kgPoux
23
70 kg
Weight (KG) →
Result →
82
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | MARTIN Tony | 75 |
2 | LARSSON Gustav Erik | 77 |
3 | CHAVANEL Sylvain | 73 |
4 | PINOTTI Marco | 67 |
5 | LE BON Johan | 70 |
6 | OYARZÚN Carlos Iván | 66 |
7 | KAISEN Olivier | 82 |
8 | ROY Jérémy | 70 |
9 | BALDO Nicolas | 73 |
10 | DELAPLACE Anthony | 65 |
12 | WURF Cameron | 71 |
13 | WESTRA Lieuwe | 74 |
15 | MOLARD Rudy | 62 |
16 | ŠIŠKEVIČIUS Evaldas | 80 |
17 | NAULEAU Bryan | 67 |
18 | KEIZER Martijn | 72 |
19 | GÉRARD Arnaud | 70 |
20 | COQUARD Bryan | 59 |
21 | HUREL Tony | 66 |
22 | TULIK Angélo | 64 |
23 | POUX Paul | 70 |