Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Chavanel
1
73 kgRoy
2
70 kgOyarzún
4
66 kgSaramotins
5
75 kgFouchard
6
74 kgRossetto
7
68 kgPérichon
8
69 kgBaldo
9
73 kgWallays
10
77 kgLarsson
12
77 kgGouault
13
61 kgBille
14
67 kgDron
15
72 kgGazvoda
16
72 kgPardini
17
68 kgCordeel
18
80 kgŠiškevičius
19
80 kgEngoulvent
21
82 kgWaeytens
22
67 kgDemoitié
23
69 kg
1
73 kgRoy
2
70 kgOyarzún
4
66 kgSaramotins
5
75 kgFouchard
6
74 kgRossetto
7
68 kgPérichon
8
69 kgBaldo
9
73 kgWallays
10
77 kgLarsson
12
77 kgGouault
13
61 kgBille
14
67 kgDron
15
72 kgGazvoda
16
72 kgPardini
17
68 kgCordeel
18
80 kgŠiškevičius
19
80 kgEngoulvent
21
82 kgWaeytens
22
67 kgDemoitié
23
69 kg
Weight (KG) →
Result →
82
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | CHAVANEL Sylvain | 73 |
2 | ROY Jérémy | 70 |
4 | OYARZÚN Carlos Iván | 66 |
5 | SARAMOTINS Aleksejs | 75 |
6 | FOUCHARD Julien | 74 |
7 | ROSSETTO Stéphane | 68 |
8 | PÉRICHON Pierre-Luc | 69 |
9 | BALDO Nicolas | 73 |
10 | WALLAYS Jelle | 77 |
12 | LARSSON Gustav Erik | 77 |
13 | GOUAULT Pierre | 61 |
14 | BILLE Gaëtan | 67 |
15 | DRON Boris | 72 |
16 | GAZVODA Gregor | 72 |
17 | PARDINI Olivier | 68 |
18 | CORDEEL Sander | 80 |
19 | ŠIŠKEVIČIUS Evaldas | 80 |
21 | ENGOULVENT Jimmy | 82 |
22 | WAEYTENS Zico | 67 |
23 | DEMOITIÉ Antoine | 69 |