Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Kiryienka
1
69 kgCastroviejo
2
62 kgMadsen
3
67 kgMullen
4
77 kgLe Bon
5
70 kgWestmattelmann
6
75 kgRoy
7
70 kgKorsæth
8
84 kgRossetto
10
68 kgChavanel
11
73 kgGeniez
12
68 kgCabot
13
76 kgBagües
14
67 kgDeruette
16
70 kgBaldo
17
73 kgGérard
18
70 kgDernies
19
68 kgGouault
20
61 kgCavagna
21
78 kgGrellier
22
65 kgBraun
23
76 kgMoser
26
64 kg
1
69 kgCastroviejo
2
62 kgMadsen
3
67 kgMullen
4
77 kgLe Bon
5
70 kgWestmattelmann
6
75 kgRoy
7
70 kgKorsæth
8
84 kgRossetto
10
68 kgChavanel
11
73 kgGeniez
12
68 kgCabot
13
76 kgBagües
14
67 kgDeruette
16
70 kgBaldo
17
73 kgGérard
18
70 kgDernies
19
68 kgGouault
20
61 kgCavagna
21
78 kgGrellier
22
65 kgBraun
23
76 kgMoser
26
64 kg
Weight (KG) →
Result →
84
61
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | KIRYIENKA Vasil | 69 |
2 | CASTROVIEJO Jonathan | 62 |
3 | MADSEN Martin Toft | 67 |
4 | MULLEN Ryan | 77 |
5 | LE BON Johan | 70 |
6 | WESTMATTELMANN Daniel | 75 |
7 | ROY Jérémy | 70 |
8 | KORSÆTH Truls Engen | 84 |
10 | ROSSETTO Stéphane | 68 |
11 | CHAVANEL Sylvain | 73 |
12 | GENIEZ Alexandre | 68 |
13 | CABOT Jérémy | 76 |
14 | BAGÜES Aritz | 67 |
16 | DERUETTE Thomas | 70 |
17 | BALDO Nicolas | 73 |
18 | GÉRARD Arnaud | 70 |
19 | DERNIES Tom | 68 |
20 | GOUAULT Pierre | 61 |
21 | CAVAGNA Rémi | 78 |
22 | GRELLIER Fabien | 65 |
23 | BRAUN Julian | 76 |
26 | MOSER Moreno | 64 |