Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Küng
1
83 kgMadsen
2
67 kgDe Marchi
3
65 kgGate
4
71 kgEvenepoel
5
61 kgHerregodts
6
70 kgMuff
7
78 kgLatour
8
66 kgWolf
9
85 kgRossetto
11
68 kgTaaramäe
12
73 kgDelaplace
13
65 kgRitzinger
14
80 kgBraun
15
76 kgKeisse
16
72 kgIlić
17
86 kgThill
18
73 kgPaasschens
19
75 kgTzortzakis
20
80 kgMaitre
21
71 kgDuval
22
68 kgWais
23
71 kg
1
83 kgMadsen
2
67 kgDe Marchi
3
65 kgGate
4
71 kgEvenepoel
5
61 kgHerregodts
6
70 kgMuff
7
78 kgLatour
8
66 kgWolf
9
85 kgRossetto
11
68 kgTaaramäe
12
73 kgDelaplace
13
65 kgRitzinger
14
80 kgBraun
15
76 kgKeisse
16
72 kgIlić
17
86 kgThill
18
73 kgPaasschens
19
75 kgTzortzakis
20
80 kgMaitre
21
71 kgDuval
22
68 kgWais
23
71 kg
Weight (KG) →
Result →
86
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | KÜNG Stefan | 83 |
2 | MADSEN Martin Toft | 67 |
3 | DE MARCHI Alessandro | 65 |
4 | GATE Aaron | 71 |
5 | EVENEPOEL Remco | 61 |
6 | HERREGODTS Rune | 70 |
7 | MUFF Frederik | 78 |
8 | LATOUR Pierre | 66 |
9 | WOLF Justin | 85 |
11 | ROSSETTO Stéphane | 68 |
12 | TAARAMÄE Rein | 73 |
13 | DELAPLACE Anthony | 65 |
14 | RITZINGER Felix | 80 |
15 | BRAUN Julian | 76 |
16 | KEISSE Iljo | 72 |
17 | ILIĆ Ognjen | 86 |
18 | THILL Tom | 73 |
19 | PAASSCHENS Mathijs | 75 |
20 | TZORTZAKIS Polychronis | 80 |
21 | MAITRE Florian | 71 |
22 | DUVAL Julien | 68 |
23 | WAIS Ahmad Badreddin | 71 |