Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 47
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Zárate
3
68 kgKnees
5
81 kgFothen
6
71 kgIglinskiy
7
67 kgRuss
8
62 kgSiedler
9
75 kgBazayev
11
62 kgGlasner
31
72 kgHaussler
36
74 kgMusiol
37
70 kgKrauß
45
81 kgPerget
48
64 kgRetschke
60
66 kgSchillinger
64
72 kgLampater
65
75 kgMüller
82
69 kgSchulze
91
70 kgSieberg
99
80 kg
3
68 kgKnees
5
81 kgFothen
6
71 kgIglinskiy
7
67 kgRuss
8
62 kgSiedler
9
75 kgBazayev
11
62 kgGlasner
31
72 kgHaussler
36
74 kgMusiol
37
70 kgKrauß
45
81 kgPerget
48
64 kgRetschke
60
66 kgSchillinger
64
72 kgLampater
65
75 kgMüller
82
69 kgSchulze
91
70 kgSieberg
99
80 kg
Weight (KG) →
Result →
81
62
3
99
# | Rider | Weight (KG) |
---|---|---|
3 | ZÁRATE Carlos | 68 |
5 | KNEES Christian | 81 |
6 | FOTHEN Markus | 71 |
7 | IGLINSKIY Maxim | 67 |
8 | RUSS Matthias | 62 |
9 | SIEDLER Sebastian | 75 |
11 | BAZAYEV Assan | 62 |
31 | GLASNER Björn | 72 |
36 | HAUSSLER Heinrich | 74 |
37 | MUSIOL Daniel | 70 |
45 | KRAUß Sven | 81 |
48 | PERGET Mathieu | 64 |
60 | RETSCHKE Robert | 66 |
64 | SCHILLINGER Andreas | 72 |
65 | LAMPATER Leif | 75 |
82 | MÜLLER Christian | 69 |
91 | SCHULZE André | 70 |
99 | SIEBERG Marcel | 80 |