Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Brutt
1
70 kgRasch
2
72 kgIgnatiev
4
67 kgRovny
5
62 kgGeschke
9
64 kgSerov
12
77 kgKlimov
13
69 kgNordhaug
14
63 kgHegreberg
27
72 kgRoels
30
75 kgTrusov
32
77 kgSalgueiro
38
73 kgGottfried
40
60 kgMarangoni
42
74 kgKonovalovas
61
74 kgWilmann
69
69 kgBeyer
70
63 kgFriedemann
89
75 kgFlammang
104
80 kgWestmattelmann
109
75 kgFairly
130
60 kg
1
70 kgRasch
2
72 kgIgnatiev
4
67 kgRovny
5
62 kgGeschke
9
64 kgSerov
12
77 kgKlimov
13
69 kgNordhaug
14
63 kgHegreberg
27
72 kgRoels
30
75 kgTrusov
32
77 kgSalgueiro
38
73 kgGottfried
40
60 kgMarangoni
42
74 kgKonovalovas
61
74 kgWilmann
69
69 kgBeyer
70
63 kgFriedemann
89
75 kgFlammang
104
80 kgWestmattelmann
109
75 kgFairly
130
60 kg
Weight (KG) →
Result →
80
60
1
130
# | Rider | Weight (KG) |
---|---|---|
1 | BRUTT Pavel | 70 |
2 | RASCH Gabriel | 72 |
4 | IGNATIEV Mikhail | 67 |
5 | ROVNY Ivan | 62 |
9 | GESCHKE Simon | 64 |
12 | SEROV Alexander | 77 |
13 | KLIMOV Sergey | 69 |
14 | NORDHAUG Lars Petter | 63 |
27 | HEGREBERG Morten | 72 |
30 | ROELS Dominik | 75 |
32 | TRUSOV Nikolay | 77 |
38 | SALGUEIRO Enrique | 73 |
40 | GOTTFRIED Alexander | 60 |
42 | MARANGONI Alan | 74 |
61 | KONOVALOVAS Ignatas | 74 |
69 | WILMANN Frederik | 69 |
70 | BEYER Chad | 63 |
89 | FRIEDEMANN Matthias | 75 |
104 | FLAMMANG Tom | 80 |
109 | WESTMATTELMANN Daniel | 75 |
130 | FAIRLY Caleb | 60 |