Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Henao
1
61 kgSalgueiro
3
73 kgTennant
7
82 kgPantano
8
61 kgDowning
9
64 kgSchillinger
14
72 kgOliphant
16
66 kgde Baat
23
66 kgMas
28
69 kgSuarez
31
67 kgvan Leijen
32
73 kgTauler
42
74 kgGmelich Meijling
46
77 kgElliott
52
76 kgMcNally
53
72 kgValls
54
64 kgKreder
55
71 kgWestmattelmann
63
75 kgPantoja
68
59 kgKal
72
72 kg
1
61 kgSalgueiro
3
73 kgTennant
7
82 kgPantano
8
61 kgDowning
9
64 kgSchillinger
14
72 kgOliphant
16
66 kgde Baat
23
66 kgMas
28
69 kgSuarez
31
67 kgvan Leijen
32
73 kgTauler
42
74 kgGmelich Meijling
46
77 kgElliott
52
76 kgMcNally
53
72 kgValls
54
64 kgKreder
55
71 kgWestmattelmann
63
75 kgPantoja
68
59 kgKal
72
72 kg
Weight (KG) →
Result →
82
59
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | HENAO Sergio | 61 |
3 | SALGUEIRO Enrique | 73 |
7 | TENNANT Andrew | 82 |
8 | PANTANO Jarlinson | 61 |
9 | DOWNING Russell | 64 |
14 | SCHILLINGER Andreas | 72 |
16 | OLIPHANT Evan | 66 |
23 | DE BAAT Arjen | 66 |
28 | MAS Lluís | 69 |
31 | SUAREZ Camilo Andres | 67 |
32 | VAN LEIJEN Joost | 73 |
42 | TAULER Toni | 74 |
46 | GMELICH MEIJLING Jarno | 77 |
52 | ELLIOTT Malcolm | 76 |
53 | MCNALLY Mark | 72 |
54 | VALLS Rafael | 64 |
55 | KREDER Wesley | 71 |
63 | WESTMATTELMANN Daniel | 75 |
68 | PANTOJA Darwin Ferney | 59 |
72 | KAL Miraç | 72 |