Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Vermandel
1
75 kgRich
3
61 kgScieur
4
78 kgGoethals
6
75 kgBeeckman
7
61 kgHuot
8
66 kgJacquinot
9
75 kgMagne
11
74 kgVan Daele
12
68 kgMartinet
13
65 kgPersin
14
71 kgReboul
15
72 kgCanova
16
71 kgGodinat
17
69 kgArchelais
18
64 kgFasoli
21
70 kgMazziotta
23
63 kgDelbart
24
65 kgNoullez
26
70 kgLafosse
29
70 kg
1
75 kgRich
3
61 kgScieur
4
78 kgGoethals
6
75 kgBeeckman
7
61 kgHuot
8
66 kgJacquinot
9
75 kgMagne
11
74 kgVan Daele
12
68 kgMartinet
13
65 kgPersin
14
71 kgReboul
15
72 kgCanova
16
71 kgGodinat
17
69 kgArchelais
18
64 kgFasoli
21
70 kgMazziotta
23
63 kgDelbart
24
65 kgNoullez
26
70 kgLafosse
29
70 kg
Weight (KG) →
Result →
78
61
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | VERMANDEL René | 75 |
3 | RICH Lucien | 61 |
4 | SCIEUR Léon | 78 |
6 | GOETHALS Félix | 75 |
7 | BEECKMAN Théophile | 61 |
8 | HUOT Marcel | 66 |
9 | JACQUINOT Robert | 75 |
11 | MAGNE Antonin | 74 |
12 | VAN DAELE Joseph | 68 |
13 | MARTINET Jean | 65 |
14 | PERSIN Edouard | 71 |
15 | REBOUL Robert | 72 |
16 | CANOVA Giovanni | 71 |
17 | GODINAT André | 69 |
18 | ARCHELAIS Jean | 64 |
21 | FASOLI Pietro | 70 |
23 | MAZZIOTTA André | 63 |
24 | DELBART Paul | 65 |
26 | NOULLEZ Alfred | 70 |
29 | LAFOSSE Victor | 70 |