Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Vermandel
1
75 kgJacquinot
3
75 kgHuot
4
66 kgRich
5
61 kgVan Daele
6
68 kgScieur
7
78 kgGoethals
8
75 kgBeeckman
11
61 kgMartinet
12
65 kgMagne
13
74 kgCanova
14
71 kgPersin
17
71 kgReboul
18
72 kgGodinat
19
69 kgFasoli
20
70 kgArchelais
21
64 kgMazziotta
22
63 kgDelbart
23
65 kgLafosse
27
70 kgNoullez
31
70 kg
1
75 kgJacquinot
3
75 kgHuot
4
66 kgRich
5
61 kgVan Daele
6
68 kgScieur
7
78 kgGoethals
8
75 kgBeeckman
11
61 kgMartinet
12
65 kgMagne
13
74 kgCanova
14
71 kgPersin
17
71 kgReboul
18
72 kgGodinat
19
69 kgFasoli
20
70 kgArchelais
21
64 kgMazziotta
22
63 kgDelbart
23
65 kgLafosse
27
70 kgNoullez
31
70 kg
Weight (KG) →
Result →
78
61
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | VERMANDEL René | 75 |
3 | JACQUINOT Robert | 75 |
4 | HUOT Marcel | 66 |
5 | RICH Lucien | 61 |
6 | VAN DAELE Joseph | 68 |
7 | SCIEUR Léon | 78 |
8 | GOETHALS Félix | 75 |
11 | BEECKMAN Théophile | 61 |
12 | MARTINET Jean | 65 |
13 | MAGNE Antonin | 74 |
14 | CANOVA Giovanni | 71 |
17 | PERSIN Edouard | 71 |
18 | REBOUL Robert | 72 |
19 | GODINAT André | 69 |
20 | FASOLI Pietro | 70 |
21 | ARCHELAIS Jean | 64 |
22 | MAZZIOTTA André | 63 |
23 | DELBART Paul | 65 |
27 | LAFOSSE Victor | 70 |
31 | NOULLEZ Alfred | 70 |