Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Vinokourov
1
68 kgSandstød
2
74 kgNazon
3
68 kgKasputis
5
83 kgNazon
6
74 kgThijs
11
69 kgGabriel
13
60 kgSchmidt
18
73 kgde Groot
19
65 kgMizurov
21
68 kgEngels
24
64 kgLandry
26
77 kgCretskens
27
75 kgHoste
28
80 kgZanotti
30
70 kgPronk
37
73 kgDessel
38
63 kgKroon
42
67 kgTombak
44
71 kgBeuchat
45
62 kgBarry
46
72 kgJoachim
47
82 kgJohansen
48
78 kgTessier
50
70 kg
1
68 kgSandstød
2
74 kgNazon
3
68 kgKasputis
5
83 kgNazon
6
74 kgThijs
11
69 kgGabriel
13
60 kgSchmidt
18
73 kgde Groot
19
65 kgMizurov
21
68 kgEngels
24
64 kgLandry
26
77 kgCretskens
27
75 kgHoste
28
80 kgZanotti
30
70 kgPronk
37
73 kgDessel
38
63 kgKroon
42
67 kgTombak
44
71 kgBeuchat
45
62 kgBarry
46
72 kgJoachim
47
82 kgJohansen
48
78 kgTessier
50
70 kg
Weight (KG) →
Result →
83
60
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | VINOKOUROV Alexandre | 68 |
2 | SANDSTØD Michael | 74 |
3 | NAZON Damien | 68 |
5 | KASPUTIS Artūras | 83 |
6 | NAZON Jean-Patrick | 74 |
11 | THIJS Erwin | 69 |
13 | GABRIEL Frédéric | 60 |
18 | SCHMIDT Torsten | 73 |
19 | DE GROOT Bram | 65 |
21 | MIZUROV Andrey | 68 |
24 | ENGELS Addy | 64 |
26 | LANDRY Jacques | 77 |
27 | CRETSKENS Wilfried | 75 |
28 | HOSTE Leif | 80 |
30 | ZANOTTI Marco | 70 |
37 | PRONK Matthé | 73 |
38 | DESSEL Cyril | 63 |
42 | KROON Karsten | 67 |
44 | TOMBAK Janek | 71 |
45 | BEUCHAT Roger | 62 |
46 | BARRY Michael | 72 |
47 | JOACHIM Benoît | 82 |
48 | JOHANSEN Allan | 78 |
50 | TESSIER Jean-Michel | 70 |