Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Sørensen
1
71 kgMaignan
2
63 kgBergès
3
68 kgVeneberg
4
75 kgWiggins
7
76 kgCretskens
14
75 kgMainguenaud
22
68 kgSchep
24
80 kgManning
25
76 kgThijs
26
69 kgScanlon
31
79 kgTalabardon
42
67 kgPichon
49
62 kgSassone
50
75 kgMändoja
53
69 kgMeinert-Nielsen
61
73 kgAndersson
64
71 kgEstadieu
70
67 kgHayles
72
80 kgSentjens
80
75 kg
1
71 kgMaignan
2
63 kgBergès
3
68 kgVeneberg
4
75 kgWiggins
7
76 kgCretskens
14
75 kgMainguenaud
22
68 kgSchep
24
80 kgManning
25
76 kgThijs
26
69 kgScanlon
31
79 kgTalabardon
42
67 kgPichon
49
62 kgSassone
50
75 kgMändoja
53
69 kgMeinert-Nielsen
61
73 kgAndersson
64
71 kgEstadieu
70
67 kgHayles
72
80 kgSentjens
80
75 kg
Weight (KG) →
Result →
80
62
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | SØRENSEN Nicki | 71 |
2 | MAIGNAN Gilles | 63 |
3 | BERGÈS Stéphane | 68 |
4 | VENEBERG Thorwald | 75 |
7 | WIGGINS Bradley | 76 |
14 | CRETSKENS Wilfried | 75 |
22 | MAINGUENAUD Frédéric | 68 |
24 | SCHEP Peter | 80 |
25 | MANNING Paul | 76 |
26 | THIJS Erwin | 69 |
31 | SCANLON Mark | 79 |
42 | TALABARDON Sébastien | 67 |
49 | PICHON Mickaël | 62 |
50 | SASSONE Robert | 75 |
53 | MÄNDOJA Innar | 69 |
61 | MEINERT-NIELSEN Peter | 73 |
64 | ANDERSSON Michael | 71 |
70 | ESTADIEU Laurent | 67 |
72 | HAYLES Robert | 80 |
80 | SENTJENS Roy | 75 |