Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Pietropolli
1
61 kgGonzalo
2
66 kgSoler
3
70 kgRatti
4
64 kgLadagnous
5
73 kgDall'Antonia
6
70 kgNazon
7
74 kgPichot
8
72 kgHovelijnck
9
75 kgRiblon
10
65 kgUsov
11
63 kgLaurent
12
72 kgSijmens
14
69 kgDe Schrooder
15
61 kgPauwels
19
65 kgHervé
20
60 kgLequatre
21
64 kgMéderel
25
59 kgStubbe
26
66 kgKern
30
72 kg
1
61 kgGonzalo
2
66 kgSoler
3
70 kgRatti
4
64 kgLadagnous
5
73 kgDall'Antonia
6
70 kgNazon
7
74 kgPichot
8
72 kgHovelijnck
9
75 kgRiblon
10
65 kgUsov
11
63 kgLaurent
12
72 kgSijmens
14
69 kgDe Schrooder
15
61 kgPauwels
19
65 kgHervé
20
60 kgLequatre
21
64 kgMéderel
25
59 kgStubbe
26
66 kgKern
30
72 kg
Weight (KG) →
Result →
75
59
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | PIETROPOLLI Daniele | 61 |
2 | GONZALO Eduardo | 66 |
3 | SOLER Juan Mauricio | 70 |
4 | RATTI Eddy | 64 |
5 | LADAGNOUS Matthieu | 73 |
6 | DALL'ANTONIA Tiziano | 70 |
7 | NAZON Jean-Patrick | 74 |
8 | PICHOT Alexandre | 72 |
9 | HOVELIJNCK Kurt | 75 |
10 | RIBLON Christophe | 65 |
11 | USOV Alexandre | 63 |
12 | LAURENT Christophe | 72 |
14 | SIJMENS Nico | 69 |
15 | DE SCHROODER Benny | 61 |
19 | PAUWELS Serge | 65 |
20 | HERVÉ Cédric | 60 |
21 | LEQUATRE Geoffroy | 64 |
25 | MÉDEREL Maxime | 59 |
26 | STUBBE Tom | 66 |
30 | KERN Christophe | 72 |