Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Vermandel
3
75 kgHellebaut
4
74 kgVan de Casteele
5
79 kgVille
6
68 kgBellenger
7
76 kgCuvelier
8
65 kgVerschueren
11
91 kgGoethals
12
75 kgHuot
13
66 kgJacquinot
14
75 kgGerbaud
15
76 kgDewaele
16
69 kgDegy
18
74 kgReboul
19
72 kgDejaeger
23
74 kgSouchard
24
62 kgPetit
25
73 kgEndaco
32
73 kgDoury
35
62 kg
3
75 kgHellebaut
4
74 kgVan de Casteele
5
79 kgVille
6
68 kgBellenger
7
76 kgCuvelier
8
65 kgVerschueren
11
91 kgGoethals
12
75 kgHuot
13
66 kgJacquinot
14
75 kgGerbaud
15
76 kgDewaele
16
69 kgDegy
18
74 kgReboul
19
72 kgDejaeger
23
74 kgSouchard
24
62 kgPetit
25
73 kgEndaco
32
73 kgDoury
35
62 kg
Weight (KG) →
Result →
91
62
3
35
# | Rider | Weight (KG) |
---|---|---|
3 | VERMANDEL René | 75 |
4 | HELLEBAUT Hilaire | 74 |
5 | VAN DE CASTEELE Camille | 79 |
6 | VILLE Maurice | 68 |
7 | BELLENGER Romain | 76 |
8 | CUVELIER Georges | 65 |
11 | VERSCHUEREN Denis | 91 |
12 | GOETHALS Félix | 75 |
13 | HUOT Marcel | 66 |
14 | JACQUINOT Robert | 75 |
15 | GERBAUD Robert | 76 |
16 | DEWAELE Maurice | 69 |
18 | DEGY Gaston | 74 |
19 | REBOUL Robert | 72 |
23 | DEJAEGER Henri | 74 |
24 | SOUCHARD Achille | 62 |
25 | PETIT Georges | 73 |
32 | ENDACO Evaristo | 73 |
35 | DOURY Octave | 62 |