Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 46
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Lequatre
1
64 kgPichot
2
72 kgSchulze
5
70 kgVeikkanen
10
66 kgLöfkvist
11
70 kgLelay
13
67 kgRenders
14
63 kgFukushima
15
62 kgVandborg
19
75 kgMartias
25
71 kgGène
26
67 kgDion
29
65 kgSteurs
30
77 kgBlain
33
82 kgRiblon
34
65 kgValentin
35
69 kgCoutouly
37
72 kgMangel
40
83 kgSprick
42
71 kg
1
64 kgPichot
2
72 kgSchulze
5
70 kgVeikkanen
10
66 kgLöfkvist
11
70 kgLelay
13
67 kgRenders
14
63 kgFukushima
15
62 kgVandborg
19
75 kgMartias
25
71 kgGène
26
67 kgDion
29
65 kgSteurs
30
77 kgBlain
33
82 kgRiblon
34
65 kgValentin
35
69 kgCoutouly
37
72 kgMangel
40
83 kgSprick
42
71 kg
Weight (KG) →
Result →
83
62
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | LEQUATRE Geoffroy | 64 |
2 | PICHOT Alexandre | 72 |
5 | SCHULZE André | 70 |
10 | VEIKKANEN Jussi | 66 |
11 | LÖFKVIST Thomas | 70 |
13 | LELAY David | 67 |
14 | RENDERS Sven | 63 |
15 | FUKUSHIMA Shinichi | 62 |
19 | VANDBORG Brian Bach | 75 |
25 | MARTIAS Rony | 71 |
26 | GÈNE Yohann | 67 |
29 | DION Renaud | 65 |
30 | STEURS Geert | 77 |
33 | BLAIN Alexandre | 82 |
34 | RIBLON Christophe | 65 |
35 | VALENTIN Tristan | 69 |
37 | COUTOULY Cédric | 72 |
40 | MANGEL Laurent | 83 |
42 | SPRICK Matthieu | 71 |