Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Löfkvist
1
70 kgVeikkanen
2
66 kgVandborg
4
75 kgLequatre
5
64 kgRiblon
6
65 kgWitecki
7
70 kgRoy
8
70 kgMonfort
9
66 kgValentin
10
69 kgMoinard
11
69 kgMcCarty
12
68 kgPichot
13
72 kgSprick
16
71 kgRenders
17
63 kgHovelijnck
21
75 kgBernaudeau
22
62 kgPedersen
26
62 kgDrujon
27
75 kgSteurs
28
77 kgMangel
29
83 kgBlain
32
82 kgChristensen
35
69 kgGène
36
67 kg
1
70 kgVeikkanen
2
66 kgVandborg
4
75 kgLequatre
5
64 kgRiblon
6
65 kgWitecki
7
70 kgRoy
8
70 kgMonfort
9
66 kgValentin
10
69 kgMoinard
11
69 kgMcCarty
12
68 kgPichot
13
72 kgSprick
16
71 kgRenders
17
63 kgHovelijnck
21
75 kgBernaudeau
22
62 kgPedersen
26
62 kgDrujon
27
75 kgSteurs
28
77 kgMangel
29
83 kgBlain
32
82 kgChristensen
35
69 kgGène
36
67 kg
Weight (KG) →
Result →
83
62
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | LÖFKVIST Thomas | 70 |
2 | VEIKKANEN Jussi | 66 |
4 | VANDBORG Brian Bach | 75 |
5 | LEQUATRE Geoffroy | 64 |
6 | RIBLON Christophe | 65 |
7 | WITECKI Mariusz | 70 |
8 | ROY Jérémy | 70 |
9 | MONFORT Maxime | 66 |
10 | VALENTIN Tristan | 69 |
11 | MOINARD Amaël | 69 |
12 | MCCARTY Jonathan Patrick | 68 |
13 | PICHOT Alexandre | 72 |
16 | SPRICK Matthieu | 71 |
17 | RENDERS Sven | 63 |
21 | HOVELIJNCK Kurt | 75 |
22 | BERNAUDEAU Giovanni | 62 |
26 | PEDERSEN Martin | 62 |
27 | DRUJON Mathieu | 75 |
28 | STEURS Geert | 77 |
29 | MANGEL Laurent | 83 |
32 | BLAIN Alexandre | 82 |
35 | CHRISTENSEN Mads | 69 |
36 | GÈNE Yohann | 67 |